Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Codon adaptation–based control of protein expression in C. elegans

Abstract

We present a method to control protein levels under native genetic regulation in Caenorhabditis elegans by using synthetic genes with adapted codons. We found that the force acting on the spindle in C. elegans embryos was related to the amount of the G-protein regulator GPR-1/2. Codon-adapted versions of any C. elegans gene can be designed using our web tool, C. elegans codon adapter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Codon-adaptation of the gpr-1 gene determines the amount of YFP–GPR-1 protein.
Figure 2: Increasing GPR-1 amounts causes an increase in force acting on the mitotic spindle.

Similar content being viewed by others

References

  1. Sharp, P.M. & Li, W.H. Nucleic Acids Res. 15, 1281–1295 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dong, H., Nilsson, L. & Kurland, C.G. J. Mol. Biol. 260, 649–663 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Duret, L. Trends Genet. 16, 287–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Colombo, K. et al. Science 300, 1957–1961 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Pecreaux, J. et al. Curr. Biol. 16, 2111–2122 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Srinivasan, D.G., Fisk, R.M., Xu, H. & van den Heuvel, S. Genes Dev. 17, 1225–1239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gotta, M., Dong, Y., Peterson, Y.K., Lanier, S.M. & Ahringer, J. Curr. Biol. 13, 1029–1037 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Barstead, R.J., Kleiman, L. & Waterston, R.H. Cell Motil. Cytoskeleton 20, 69–78 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Bringmann, H., Cowan, C.R., Kong, J. & Hyman, A.A. Curr. Biol. 17, 185–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kudla, G., Murray, A.W., Tollervey, D. & Plotkin, J.B. Science 324, 255–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, G., Bashir-Bello, N. & Freeland, S.J. Protein Expr. Purif. 47, 441–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Carbone, A., Zinovyev, A. & Kepes, F. Bioinformatics 19, 2005–2015 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Henschel, A., Buchholz, F. & Habermann, B. Nucleic Acids Res. 32, W113–W120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fire, A.A.J., Kelly, W., Harfe, B., Kostas, S., Hsieh, J., Hsu, M. & Xu, S. in GFP: Freen Fluorescent Protein Strategies and Applications (ed., Chalfie, M.) 153–168 (John Wiley and Sons New York, 1998).

  15. Praitis, V., Casey, E., Collar, D. & Austin, J. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hofacker, I.L. et al. Monatsh. Chem. 125, 167–188 (1994).

    Article  CAS  Google Scholar 

  17. Riddle, D., Blumenthal, T., Meyer, B. & Priess, J. C. elegans II (Cold Spring Harbor Laboratory Press, 1997).

  18. Hebsgaard, S.M. et al. Nucleic Acids Res. 24, 3439–3452 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brunak, S., Engelbrecht, J. & Knudsen, S. J. Mol. Biol. 220, 49–65 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grill, S.W., Howard, J., Schaffer, E., Stelzer, E.H. & Hyman, A.A. Science 301, 518–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Grill, S.W., Gonczy, P., Stelzer, E.H. & Hyman, A.A. Nature 409, 630–633 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Rual, J.F. et al. Genome Res. 14, 2162–2168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fraser, A.G. et al. Nature 408, 325–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Kamath, R.S. et al. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Busch, M. Decker, N. Goehring and Z. Maliga for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.R. characterized all strains. S.S. wrote the web tool algorithm and analyzed genome-wide CAI. S.E. bombarded all constructs. A.P. cloned constructs. S.A. filmed embryos. A.A.H. mentored and financed the project. S.R., A.A.H. and H.B. wrote the paper. H.B. conceived the general synthetic gene design, cloned gpr-1 constructs and preliminarily characterized gpr-1 strains.

Corresponding author

Correspondence to Henrik Bringmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 4445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redemann, S., Schloissnig, S., Ernst, S. et al. Codon adaptation–based control of protein expression in C. elegans. Nat Methods 8, 250–252 (2011). https://doi.org/10.1038/nmeth.1565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing