Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development and applications of single-cell transcriptome analysis

Abstract

Dissecting the relationship between genotype and phenotype is one of the central goals in developmental biology and medicine. Transcriptome analysis is a powerful strategy to connect genotype to phenotype of a cell. Here we review the history, progress, potential applications and future developments of single-cell transcriptome analysis. In combination with live cell imaging and lineage tracing, it will be possible to decipher the full gene expression network underlying physiological functions of individual cells in embryos and adults, and to study diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for single-cell transcriptome analysis.

Similar content being viewed by others

References

  1. Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tang, F. et al. RNA-seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. He, C. Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol. 6, 863–865 (2010).

    CAS  PubMed  Google Scholar 

  4. Schulze, A. & Downward, J. Navigating gene expression using microarrays—a technology review. Nat. Cell Biol. 3, E190–E195 (2001).

    CAS  PubMed  Google Scholar 

  5. Cloonan, N. & Grimmond, S.M. Transcriptome content and dynamics at single-nucleotide resolution. Genome Biol. 9, 234 (2008).

    PubMed  PubMed Central  Google Scholar 

  6. Wold, B. & Myers, R.M. Sequence census methods for functional genomics. Nat. Methods 5, 19–21 (2008).

    CAS  PubMed  Google Scholar 

  7. Schuster, S.C. Next-generation sequencing transforms today's biology. Nat. Methods 5, 16–18 (2008).

    CAS  PubMed  Google Scholar 

  8. Saitou, M., Barton, S.C. & Surani, M.A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

    CAS  PubMed  Google Scholar 

  9. Huang, S. Non-genetic heterogeneity of cells in development: more than just noise. Development 136, 3853–3862 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eldar, A. & Elowitz, M.B. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, P.J., Cai, L., Frieda, K. & Xie, X.S. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442–446 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frank, N.Y., Schatton, T. & Frank, M.H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hayashi, K., Lopes, S.M., Tang, F. & Surani, M.A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008).

    CAS  PubMed  Google Scholar 

  16. Panda, S., Hogenesch, J.B. & Kay, S.A. Circadian rhythms from flies to human. Nature 417, 329–335 (2002).

    CAS  PubMed  Google Scholar 

  17. Maury, E., Ramsey, K.M. & Bass, J. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ. Res. 106, 447–462 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wittenberg, C. & Reed, S.I. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 24, 2746–2755 (2005).

    CAS  PubMed  Google Scholar 

  19. Arias, A.M. & Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7, 34–44 (2006).

    CAS  PubMed  Google Scholar 

  20. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Losick, R. & Desplan, C. Stochasticity and cell fate. Science 320, 65–68 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shahrezaei, V. & Swain, P.S. The stochastic nature of biochemical networks. Curr. Opin. Biotechnol. 19, 369–374 (2008).

    CAS  PubMed  Google Scholar 

  23. Brady, G., Barbara, M. & Iscove, N.N. Representative in vitro cDNA amplification from individual hemopoietic cells and colonies. Methods Mol. Cell. Biol. 2, 17–25 (1990). This first report on the preparation of single-cell cDNAs by exponential amplification based on PCR established the foundation for single-cell cDNA microarray and RNA-seq analysis.

    CAS  Google Scholar 

  24. Eberwine, J. et al. Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. USA 89, 3010–3014 (1992). This study reported preparation of single cell cDNAs by linear amplification based on IVT.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Gelder, R.N. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995).

    CAS  PubMed  Google Scholar 

  27. Tanabe, Y., William, C. & Jessell, T.M. Specification of motor neuron identity by the MNR2 homeodomain protein. Cell 95, 67–80 (1998).

    CAS  PubMed  Google Scholar 

  28. Yamagata, M., Weiner, J.A. & Sanes, J.R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002).

    CAS  PubMed  Google Scholar 

  29. Shumyatsky, G.P. et al. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111, 905–918 (2002).

    CAS  PubMed  Google Scholar 

  30. Kurimoto, K. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34, e42 (2006). This was the first report of highly quantitative ( R2 = 0.89 for embryonic stem cells) single -cell cDNA microarray analysis.

    PubMed  PubMed Central  Google Scholar 

  31. Jensen, K.B. & Watt, F.M. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc. Natl. Acad. Sci. USA 103, 11958–11963 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Klein, C.A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nat. Biotechnol. 20, 387–392 (2002). This report describes the isolation and amplification of cDNAs and genomic DNAs simultaneously from a single cell for transcriptome and comparative genomic hybridization analysis, which facilitated the analysis of evolution of tumor cells at single-cell resolution.

    CAS  PubMed  Google Scholar 

  33. Hartmann, C.H. & Klein, C.A. Gene expression profiling of single cells on large-scale oligonucleotide arrays. Nucleic Acids Res. 34, e143 (2006).

    PubMed  PubMed Central  Google Scholar 

  34. Bontoux, N. et al. Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling. Lab Chip. 8, 443–450 (2008).

    CAS  PubMed  Google Scholar 

  35. Sul, J.Y. et al. Transcriptome transfer produces a predictable cellular phenotype. Proc. Natl. Acad. Sci. USA 106, 7624–7629 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tietjen, I. et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38, 161–175 (2003). This was the first report describing the use of high-density oligonucleotide arrays for single-cell cDNA microarray analysis.

    CAS  PubMed  Google Scholar 

  37. Tietjen, I., Rihel, J. & Dulac, C.G. Single-cell transcriptional profiles and spatial patterning of the mammalian olfactory epithelium. Int. J. Dev. Biol. 49, 201–207 (2005).

    CAS  PubMed  Google Scholar 

  38. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99–107 (2006).

    CAS  PubMed  Google Scholar 

  39. Xie, D. et al. Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res. 20, 804–815 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Klein, C.A. Single cell amplification methods for the study of cancer and cellular ageing. Mech. Ageing Dev. 126, 147–151 (2005).

    CAS  PubMed  Google Scholar 

  41. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009). This first report of single-cell RNA-seq digital transcriptome analysis based on next-generation sequencing described complex features of single-cell transcriptomes at single-base resolution.

    Article  CAS  PubMed  Google Scholar 

  42. Schütze, K. & Lahr, G. Identification of expressed genes by laser-mediated manipulation of single cells. Nat. Biotechnol. 16, 737–742 (1998).

    PubMed  Google Scholar 

  43. Galbraith, D.W., Elumalai, R. & Gong, F.C. Integrative flow cytometric and microarray approaches for use in transcriptional profiling. Methods Mol. Biol. 263, 259–280 (2004).

    CAS  PubMed  Google Scholar 

  44. Warren, L., Bryder, D., Weissman, I.L. & Quake, S.R. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc. Natl. Acad. Sci. USA 103, 17807–17812 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Warren, L.A. et al. Transcriptional instability is not a universal attribute of aging. Aging Cell 6, 775–782 (2007).

    CAS  PubMed  Google Scholar 

  46. Zhang, C., Barthelson, R.A., Lambert, G.M. & Galbraith, D.W. Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol. 147, 30–40 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Spiller, D.G., Wood, C.D., Rand, D.A. & White, M.R. Measurement of single-cell dynamics. Nature 465, 736–745 (2010).

    CAS  PubMed  Google Scholar 

  48. Ståhlberg, A. & Bengtsson, M. Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods 50, 282–288 (2010).

    PubMed  Google Scholar 

  49. Taniguchi, K., Kajiyama, T. & Kambara, H. Quantitative analysis of gene expression in a single cell by qPCR. Nat. Methods 6, 503–506 (2009).

    CAS  PubMed  Google Scholar 

  50. Livesey, F.J. Strategies for microarray analysis of limiting amounts of RNA. Brief. Funct. Genomics Proteomics 2, 31–36 (2003).

    CAS  Google Scholar 

  51. Kawasaki, E.S. Microarrays and the gene expression profile of a single cell. Ann. NY Acad. Sci. 1020, 92–100 (2004).

    CAS  PubMed  Google Scholar 

  52. Kurimoto, K., Yabuta, Y., Ohinata, Y. & Saitou, M. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat. Protoc. 2, 739–752 (2007).

    CAS  PubMed  Google Scholar 

  53. Tang, F. et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-seq analysis. Cell Stem Cell 6, 468–478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

    CAS  PubMed  Google Scholar 

  55. Pepke, S., Wold, B. & Mortazavi, A. Computation for ChIP-seq and RNA-seq studies. Nat. Methods 6, S22–S32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28, 503–510 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Griffith, M. et al. Alternative expression analysis by RNA sequencing. Nat. Methods 7, 843–847 (2010).

    CAS  PubMed  Google Scholar 

  59. Katz, Y., Wang, E.T., Airoldi, E.M. & Burge, C.B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods 7, 909–912 (2010).

    CAS  PubMed  Google Scholar 

  61. Lee, S. et al. Accurate quantification of transcriptome from RNA-seq data by effective length normalization. Nucleic Acids Res. 39, e9 (2011).

    PubMed  Google Scholar 

  62. Baserga, R. Is cell size important? Cell Cycle 6, 814–816 (2007).

    CAS  PubMed  Google Scholar 

  63. Crissman, H.A. & Steinkamp, J.A. Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J. Cell Biol. 59, 766–771 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kurimoto, K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22, 1617–1635 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kurimoto, K. & Saitou, M. Single-cell cDNA microarray profiling of complex biological processes of differentiation. Curr. Opin. Genet. Dev. 20, 470–477 (2010).

    CAS  PubMed  Google Scholar 

  66. Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M. & Sorger, P.K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

    CAS  PubMed  Google Scholar 

  68. Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008).

    CAS  PubMed  Google Scholar 

  69. Shackleton, M., Quintana, E., Fearon, E.R. & Morrison, S.J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009).

    CAS  PubMed  Google Scholar 

  70. Willis, D.E. & Twiss, J.L. Regulation of protein levels in subcellular domains through mRNA transport and localized translation. Mol. Cell. Proteomics 9, 952–962 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, K. et al. Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nat. Methods 6, 613–618 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Levin, J.Z. et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat. Methods 7, 709–715 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schroeder, T. Imaging stem-cell-driven regeneration in mammals. Nature 453, 345–351 (2008).

    CAS  PubMed  Google Scholar 

  74. Smith, Z.D., Nachman, I., Regev, A. & Meissner, A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat. Biotechnol 28, 521–526 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ozsolak, F. et al. Direct RNA sequencing. Nature 461, 814–818 (2009).

    CAS  PubMed  Google Scholar 

  76. Ozsolak, F. et al. Amplification-free digital gene expression profiling from minute cell quantities. Nat. Methods 7, 619–621 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Treffer, R. & Deckert, V. Recent advances in single-molecule sequencing. Curr. Opin. Biotechnol. 21, 4–11 (2010).

    CAS  PubMed  Google Scholar 

  78. Guo, H., Ingolia, N.T., Weissman, J.S. & Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Doyle, J.P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mustroph, A. et al. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis . Proc. Natl. Acad. Sci. USA 106, 18843–18848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sanz, E. et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA 106, 13939–13944 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zanetti, M.E., Chang, I.-F., Gong, F.C., Galbraith, D.W. & Bailey-Serres, J. Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol. 138, 624–635 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang, F. et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644–648 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tang, F., Hajkova, P., Barton, S.C., Lao, K. & Surani, M.A. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 34, e9 (2006).

    PubMed  PubMed Central  Google Scholar 

  86. Tang, F. et al. 220-plex microRNA expression profile of a single cell. Nat. Protoc. 1, 1154–1159 (2006).

    CAS  PubMed  Google Scholar 

  87. Guo, G. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685 (2010).

    CAS  PubMed  Google Scholar 

  88. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Femino, A.M., Fay, F.S., Fogarty, K. & Singer, R.H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaiqin Lao or M Azim Surani.

Ethics declarations

Competing interests

K.L. is an employee of Applied Biosystems (part of Life Technologies).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, F., Lao, K. & Surani, M. Development and applications of single-cell transcriptome analysis. Nat Methods 8 (Suppl 4), S6–S11 (2011). https://doi.org/10.1038/nmeth.1557

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing