Development and applications of single-cell transcriptome analysis

Article metrics

Abstract

Dissecting the relationship between genotype and phenotype is one of the central goals in developmental biology and medicine. Transcriptome analysis is a powerful strategy to connect genotype to phenotype of a cell. Here we review the history, progress, potential applications and future developments of single-cell transcriptome analysis. In combination with live cell imaging and lineage tracing, it will be possible to decipher the full gene expression network underlying physiological functions of individual cells in embryos and adults, and to study diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Strategies for single-cell transcriptome analysis.

References

  1. 1

    Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

  2. 2

    Tang, F. et al. RNA-seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

  3. 3

    He, C. Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol. 6, 863–865 (2010).

  4. 4

    Schulze, A. & Downward, J. Navigating gene expression using microarrays—a technology review. Nat. Cell Biol. 3, E190–E195 (2001).

  5. 5

    Cloonan, N. & Grimmond, S.M. Transcriptome content and dynamics at single-nucleotide resolution. Genome Biol. 9, 234 (2008).

  6. 6

    Wold, B. & Myers, R.M. Sequence census methods for functional genomics. Nat. Methods 5, 19–21 (2008).

  7. 7

    Schuster, S.C. Next-generation sequencing transforms today's biology. Nat. Methods 5, 16–18 (2008).

  8. 8

    Saitou, M., Barton, S.C. & Surani, M.A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

  9. 9

    Huang, S. Non-genetic heterogeneity of cells in development: more than just noise. Development 136, 3853–3862 (2009).

  10. 10

    Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

  11. 11

    Eldar, A. & Elowitz, M.B. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).

  12. 12

    Choi, P.J., Cai, L., Frieda, K. & Xie, X.S. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442–446 (2008).

  13. 13

    Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

  14. 14

    Frank, N.Y., Schatton, T. & Frank, M.H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010).

  15. 15

    Hayashi, K., Lopes, S.M., Tang, F. & Surani, M.A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008).

  16. 16

    Panda, S., Hogenesch, J.B. & Kay, S.A. Circadian rhythms from flies to human. Nature 417, 329–335 (2002).

  17. 17

    Maury, E., Ramsey, K.M. & Bass, J. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ. Res. 106, 447–462 (2010).

  18. 18

    Wittenberg, C. & Reed, S.I. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 24, 2746–2755 (2005).

  19. 19

    Arias, A.M. & Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7, 34–44 (2006).

  20. 20

    Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

  21. 21

    Losick, R. & Desplan, C. Stochasticity and cell fate. Science 320, 65–68 (2008).

  22. 22

    Shahrezaei, V. & Swain, P.S. The stochastic nature of biochemical networks. Curr. Opin. Biotechnol. 19, 369–374 (2008).

  23. 23

    Brady, G., Barbara, M. & Iscove, N.N. Representative in vitro cDNA amplification from individual hemopoietic cells and colonies. Methods Mol. Cell. Biol. 2, 17–25 (1990). This first report on the preparation of single-cell cDNAs by exponential amplification based on PCR established the foundation for single-cell cDNA microarray and RNA-seq analysis.

  24. 24

    Eberwine, J. et al. Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. USA 89, 3010–3014 (1992). This study reported preparation of single cell cDNAs by linear amplification based on IVT.

  25. 25

    Van Gelder, R.N. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667 (1990).

  26. 26

    Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995).

  27. 27

    Tanabe, Y., William, C. & Jessell, T.M. Specification of motor neuron identity by the MNR2 homeodomain protein. Cell 95, 67–80 (1998).

  28. 28

    Yamagata, M., Weiner, J.A. & Sanes, J.R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002).

  29. 29

    Shumyatsky, G.P. et al. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111, 905–918 (2002).

  30. 30

    Kurimoto, K. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34, e42 (2006). This was the first report of highly quantitative ( R2 = 0.89 for embryonic stem cells) single -cell cDNA microarray analysis.

  31. 31

    Jensen, K.B. & Watt, F.M. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc. Natl. Acad. Sci. USA 103, 11958–11963 (2006).

  32. 32

    Klein, C.A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nat. Biotechnol. 20, 387–392 (2002). This report describes the isolation and amplification of cDNAs and genomic DNAs simultaneously from a single cell for transcriptome and comparative genomic hybridization analysis, which facilitated the analysis of evolution of tumor cells at single-cell resolution.

  33. 33

    Hartmann, C.H. & Klein, C.A. Gene expression profiling of single cells on large-scale oligonucleotide arrays. Nucleic Acids Res. 34, e143 (2006).

  34. 34

    Bontoux, N. et al. Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling. Lab Chip. 8, 443–450 (2008).

  35. 35

    Sul, J.Y. et al. Transcriptome transfer produces a predictable cellular phenotype. Proc. Natl. Acad. Sci. USA 106, 7624–7629 (2009).

  36. 36

    Tietjen, I. et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38, 161–175 (2003). This was the first report describing the use of high-density oligonucleotide arrays for single-cell cDNA microarray analysis.

  37. 37

    Tietjen, I., Rihel, J. & Dulac, C.G. Single-cell transcriptional profiles and spatial patterning of the mammalian olfactory epithelium. Int. J. Dev. Biol. 49, 201–207 (2005).

  38. 38

    Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99–107 (2006).

  39. 39

    Xie, D. et al. Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res. 20, 804–815 (2010).

  40. 40

    Klein, C.A. Single cell amplification methods for the study of cancer and cellular ageing. Mech. Ageing Dev. 126, 147–151 (2005).

  41. 41

    Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009). This first report of single-cell RNA-seq digital transcriptome analysis based on next-generation sequencing described complex features of single-cell transcriptomes at single-base resolution.

  42. 42

    Schütze, K. & Lahr, G. Identification of expressed genes by laser-mediated manipulation of single cells. Nat. Biotechnol. 16, 737–742 (1998).

  43. 43

    Galbraith, D.W., Elumalai, R. & Gong, F.C. Integrative flow cytometric and microarray approaches for use in transcriptional profiling. Methods Mol. Biol. 263, 259–280 (2004).

  44. 44

    Warren, L., Bryder, D., Weissman, I.L. & Quake, S.R. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc. Natl. Acad. Sci. USA 103, 17807–17812 (2006).

  45. 45

    Warren, L.A. et al. Transcriptional instability is not a universal attribute of aging. Aging Cell 6, 775–782 (2007).

  46. 46

    Zhang, C., Barthelson, R.A., Lambert, G.M. & Galbraith, D.W. Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol. 147, 30–40 (2008).

  47. 47

    Spiller, D.G., Wood, C.D., Rand, D.A. & White, M.R. Measurement of single-cell dynamics. Nature 465, 736–745 (2010).

  48. 48

    Ståhlberg, A. & Bengtsson, M. Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods 50, 282–288 (2010).

  49. 49

    Taniguchi, K., Kajiyama, T. & Kambara, H. Quantitative analysis of gene expression in a single cell by qPCR. Nat. Methods 6, 503–506 (2009).

  50. 50

    Livesey, F.J. Strategies for microarray analysis of limiting amounts of RNA. Brief. Funct. Genomics Proteomics 2, 31–36 (2003).

  51. 51

    Kawasaki, E.S. Microarrays and the gene expression profile of a single cell. Ann. NY Acad. Sci. 1020, 92–100 (2004).

  52. 52

    Kurimoto, K., Yabuta, Y., Ohinata, Y. & Saitou, M. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat. Protoc. 2, 739–752 (2007).

  53. 53

    Tang, F. et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-seq analysis. Cell Stem Cell 6, 468–478 (2010).

  54. 54

    Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

  55. 55

    Pepke, S., Wold, B. & Mortazavi, A. Computation for ChIP-seq and RNA-seq studies. Nat. Methods 6, S22–S32 (2009).

  56. 56

    Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

  57. 57

    Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28, 503–510 (2010).

  58. 58

    Griffith, M. et al. Alternative expression analysis by RNA sequencing. Nat. Methods 7, 843–847 (2010).

  59. 59

    Katz, Y., Wang, E.T., Airoldi, E.M. & Burge, C.B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).

  60. 60

    Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods 7, 909–912 (2010).

  61. 61

    Lee, S. et al. Accurate quantification of transcriptome from RNA-seq data by effective length normalization. Nucleic Acids Res. 39, e9 (2011).

  62. 62

    Baserga, R. Is cell size important? Cell Cycle 6, 814–816 (2007).

  63. 63

    Crissman, H.A. & Steinkamp, J.A. Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J. Cell Biol. 59, 766–771 (1973).

  64. 64

    Kurimoto, K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22, 1617–1635 (2008).

  65. 65

    Kurimoto, K. & Saitou, M. Single-cell cDNA microarray profiling of complex biological processes of differentiation. Curr. Opin. Genet. Dev. 20, 470–477 (2010).

  66. 66

    Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M. & Sorger, P.K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

  67. 67

    Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

  68. 68

    Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008).

  69. 69

    Shackleton, M., Quintana, E., Fearon, E.R. & Morrison, S.J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009).

  70. 70

    Willis, D.E. & Twiss, J.L. Regulation of protein levels in subcellular domains through mRNA transport and localized translation. Mol. Cell. Proteomics 9, 952–962 (2010).

  71. 71

    Zhang, K. et al. Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nat. Methods 6, 613–618 (2009).

  72. 72

    Levin, J.Z. et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat. Methods 7, 709–715 (2010).

  73. 73

    Schroeder, T. Imaging stem-cell-driven regeneration in mammals. Nature 453, 345–351 (2008).

  74. 74

    Smith, Z.D., Nachman, I., Regev, A. & Meissner, A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat. Biotechnol 28, 521–526 (2010).

  75. 75

    Ozsolak, F. et al. Direct RNA sequencing. Nature 461, 814–818 (2009).

  76. 76

    Ozsolak, F. et al. Amplification-free digital gene expression profiling from minute cell quantities. Nat. Methods 7, 619–621 (2010).

  77. 77

    Treffer, R. & Deckert, V. Recent advances in single-molecule sequencing. Curr. Opin. Biotechnol. 21, 4–11 (2010).

  78. 78

    Guo, H., Ingolia, N.T., Weissman, J.S. & Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

  79. 79

    Doyle, J.P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

  80. 80

    Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

  81. 81

    Mustroph, A. et al. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis . Proc. Natl. Acad. Sci. USA 106, 18843–18848 (2009).

  82. 82

    Sanz, E. et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA 106, 13939–13944 (2009).

  83. 83

    Zanetti, M.E., Chang, I.-F., Gong, F.C., Galbraith, D.W. & Bailey-Serres, J. Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol. 138, 624–635 (2005).

  84. 84

    Tang, F. et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644–648 (2007).

  85. 85

    Tang, F., Hajkova, P., Barton, S.C., Lao, K. & Surani, M.A. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 34, e9 (2006).

  86. 86

    Tang, F. et al. 220-plex microRNA expression profile of a single cell. Nat. Protoc. 1, 1154–1159 (2006).

  87. 87

    Guo, G. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685 (2010).

  88. 88

    Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

  89. 89

    Femino, A.M., Fay, F.S., Fogarty, K. & Singer, R.H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

Download references

Author information

Correspondence to Kaiqin Lao or M Azim Surani.

Ethics declarations

Competing interests

K.L. is an employee of Applied Biosystems (part of Life Technologies).

Rights and permissions

Reprints and Permissions

About this article

Further reading