Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Profiling metabolites and peptides in single cells

Abstract

The intracellular levels and spatial localizations of metabolites and peptides reflect the state of a cell and its relationship to its surrounding environment. Moreover, the amounts and dynamics of metabolites and peptides are indicative of normal or pathological cellular conditions. Here we highlight established and evolving strategies for characterizing the metabolome and peptidome of single cells. Focused studies of the chemical composition of individual cells and functionally defined groups of cells promise to provide a greater understanding of cell fate, function and homeostatic balance. Single-cell bioanalytical microanalysis has also become increasingly valuable for examining cellular heterogeneity, particularly in the fields of neuroscience, stem cell biology and developmental biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-to-cell heterogeneity has many different manifestations and causes.
Figure 2: Single-cell metabolomic and peptidomic analyses involve several processes.
Figure 3: A microfluidic device with functionalized gold surfaces allows chemical stimulation of individual cultured neurons, collection of releasate and characterization of released peptides using off-line MS.
Figure 4: A variety of vacuum-based MS methods have been used for single-cell SCMP investigations.
Figure 5: Video MS can be used to probe the granules from a mast cell and identify histamine by tandem MS.

Similar content being viewed by others

References

  1. Hausser, M. The Hodgkin-Huxley theory of the action potential. Nat. Neurosci. 3 (Suppl.), 1165 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hubel, D.H. & Wiesel, T.N. Brain and visual perception: the story of a 25-year collaboration. (Oxford University Press, 2005).

    Google Scholar 

  3. Goaillard, J.M., Taylor, A.L., Schulz, D.J. & Marder, E. Functional consequences of animal-to-animal variation in circuit parameters. Nat. Neurosci. 12, 1424–1430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moroz, L.L., Gillette, R. & Sweedler, J.V. Single-cell analyses of nitrergic neurons in simple nervous systems. J. Exp. Biol. 202, 333–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Brecht, M., Schneider, M., Sakmann, B. & Margrie, T.W. Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427, 704–710 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Houweling, A.R. & Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451, 65–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Leong, K.G., Wang, B.E., Johnson, L. & Gao, W.Q. Generation of a prostate from a single adult stem cell. Nature 456, 804–808 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, D. & Bodovitz, S. Single cell analysis: the new frontier in 'omics'. Trends Biotechnol. 28, 281–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwab, W. Metabolome diversity: Too few genes, too many metabolites? Phytochemistry 62, 837–849 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Schmid, A., Kortmann, H., Dittrich, P.S. & Blank, L.M. Chemical and biological single cell analysis. Curr. Opin. Biotechnol. 21, 12–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Schmid, G. & Blanch, H.W. Extracellular and intracellular metabolite concentrations for murine hybridoma cells. Appl. Microbiol. Biotechnol. 36, 621–625 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Gao, J., Yin, X.F. & Fang, Z.L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4, 47–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Shi, B., Huang, W. & Cheng, J. Determination of neurotransmitters in PC 12 cells by microchip electrophoresis with fluorescence detection. Electrophoresis 28, 1595–1600 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Garden, R.W., Shippy, S.A., Li, L., Moroz, T.P. & Sweedler, J.V. Proteolytic processing of the Aplysia egg-laying hormone prohormone. Proc. Natl. Acad. Sci. USA 95, 3972–3977 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nery, A.A., Wrenger, C. & Ulrich, H. Recognition of biomarkers and cell-specific molecular signatures: aptamers as capture agents. J. Sep. Sci. 32, 1523–1530 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Arruebo, M., Valladares, M. & González-Fernández, A. Antibody-conjugated nanoparticles for biomedical applications. J. Nanomaterials 439389 (2009).

  18. Pruszak, J., Sonntag, K.C., Aung, M.H., Sanchez-Pernaute, R. & Isacson, O. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 25, 2257–2268 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Neumaier, C.E., Baio, G., Ferrini, S., Corte, G. & Daga, A. MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research. Tumori 94, 226–233 (2008).

    Article  PubMed  Google Scholar 

  20. Foster, P.J. et al. Cellular magnetic resonance imaging: in vivo imaging of melanoma cells in lymph nodes of mice. Neoplasia 10, 207–216 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Conte-Perales, L. et al. Neuroanatomical tracing combined with in situ hybridization: analysis of gene expression patterns within brain circuits of interest. J. Neurosci. Methods 194, 28–33 (2009).

    Article  PubMed  CAS  Google Scholar 

  22. Raju, D.V. & Smith, Y. Anterograde axonal tract tracing. Curr. Protoc. Neurosci. chapter 1, unit 14 (2006).

  23. Neupert, S. & Gundel, M. Mass spectrometric analysis of FMRFamide-like immunoreactive neurons in the prothoracic and subesophageal ganglion of Periplaneta americana . Peptides 28, 11–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Huh, Y., Oh, M.S., Leblanc, P. & Kim, K.S. Gene transfer in the nervous system and implications for transsynaptic neuronal tracing. Expert Opin. Biol. Ther. 10, 763–772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Young, P. et al. Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice. Nat. Neurosci. 11, 721–728 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neupert, S., Johard, H.A.D., Nässel, D.R. & Predel, R. Single-cell peptidomics of Drosophila melanogaster neurons identified by Gal4-driven fluorescence. Anal. Chem. 79, 3690–3694 (2007). The use of molecular labeling (here GFP expression) facilitates the isolation of specific peptidergic neurons from the fruit fly brain for mass spectrometric analysis of neuropeptide products in single cells.

    Article  CAS  PubMed  Google Scholar 

  30. Rubakhin, S.S., Aldridge, G.M., Greenough, W.T . & Sweedler, J.V. Mass spectrometric investigation of individual mammalian cells selected via molecular biology markers. in Proceedings of the 56th ASMS Conference on Mass Spectrometry and Allied Topics 402 (2008).

    Google Scholar 

  31. Guglielmi, L. et al. Mouse embryonic stem cell sorting for the generation of transgenic mice by sedimentation field-flow fractionation. Anal. Chem. 76, 1580–1585 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Rapallino, M.V. & Cupello, A. Holger Hyden's technique of preparation of single Deiters' neurons and study of permeability characteristics of their plasma membranes. Brain Res. Brain Res. Protoc. 8, 58–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Rubakhin, S.S. & Sweedler, J.V. Characterizing peptides in individual mammalian cells using mass spectrometry. Nat. Protoc. 2, 1987–1997 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Neupert, S. & Predel, R. Peptidomic analysis of single identified neurons. Methods Mol. Biol. 615, 137–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Bora, A. et al. Neuropeptidomics of the supraoptic rat nucleus. J. Proteome Res. 7, 4992–5003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mazzarello, P. A unifying concept: the history of cell theory. Nat. Cell Biol. 1, E13–E15 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Doyle, A. & Griffiths, J.B. Cell and tissue culture for medical research (Wiley, 2000).

  38. Cunningham, R.E. Overview of flow cytometry and fluorescent probes for flow cytometry. Methods Mol. Biol. 588, 319–326 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Krutzik, P.O. & Nolan, G.P. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods 3, 361–368 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Voldman, J. Engineered systems for the physical manipulation of single cells. Curr. Opin. Biotechnol. 17, 532–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Ateya, D.A. et al. The good, the bad, and the tiny: a review of microflow cytometry. Anal. Bioanal. Chem. 391, 1485–1498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kotecha, N. et al. Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 14, 335–343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown, R.B. & Audet, J. Current techniques for single-cell lysis. J. R. Soc. Interface 5 (Suppl 2), S131–S138 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. McClain, M.A. et al. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 75, 5646–5655 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, D., Sims, C.E. & Allbritton, N.L. Microelectrophoresis platform for fast serial analysis of single cells. Electrophoresis 31, 2558–2565 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Farzaneh Dehkordi, F., Ahadi, A.M., Shirazi, A. & Sadeghizade, M. Effect of lysis strategy in accuracy and repeatability of sex determination by single cell polymerase chain reaction method. J. Biol. Sci. 9, 78–82 (2009).

    Article  Google Scholar 

  47. Tyagi, R.K., Azrad, A., Degani, H. & Salomon, Y. Simultaneous extraction of cellular lipids and water-soluble metabolites: evaluation by NMR spectroscopy. Magn. Reson. Med. 35, 194–200 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Ye, X., Rubakhin, S.S. & Sweedler, J.V. Simultaneous nitric oxide and dehydroascorbic acid imaging by combining diaminofluoresceins and diaminorhodamines. J. Neurosci. Methods 168, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Motta, A., Paris, D. & Melck, D. Monitoring real-time metabolism of living cells by fast two-dimensional NMR spectroscopy. Anal. Chem. 82, 2405–2411 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Reckel, S., Hänsel, R., Löhr, F. & Dötsch, V. In-cell NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 51, 91–101 (2007).

    Article  CAS  Google Scholar 

  51. Lee, S.C. et al. Subcellular in vivo 1H MR spectroscopy of Xenopus laevis oocytes. Biophys. J. 90, 1797–1803 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Grant, S.C. et al. NMR spectroscopy of single neurons. Magn. Reson. Med. 44, 19–22 (2000). Demonstration of the technical feasibility of NMR spectroscopy for the spatial localization of osmolytes and metabolites in individual live neurons.

    Article  CAS  PubMed  Google Scholar 

  53. Olson, D.L., Peck, T.L., Webb, A.G., Magin, R.L. & Sweedler, J.V. High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270, 1967–1970 (1995).

    Article  CAS  Google Scholar 

  54. Maguire, Y., Chuang, I.L., Zhang, S. & Gershenfeld, N. Ultra-small-sample molecular structure detection using microslot waveguide nuclear spin resonance. Proc. Natl. Acad. Sci. USA 104, 9198–9203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krojanski, H.G., Lambert, J., Gerikalan, Y., Suter, D. & Hergenroder, R. Microslot NMR probe for metabolomics studies. Anal. Chem. 80, 8668–8672 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Olson, D.L., Lacey, M.E. & Sweedler, J.V. The nanoliter niche. NMR detection for trace analysis and capillary separations. Anal. Chem. 70, 257A–264A (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Amantonico, A., Urban, P.L. & Zenobi, R. Analytical techniques for single-cell metabolomics: state of the art and trends. Anal. Bioanal. Chem. 398, 2493–2504 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Freudiger, C.W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rinia, H.A., Burger, K.N., Bonn, M. & Muller, M. Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys. J. 95, 4908–4914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kennedy, R.T., St. Claire, R.L., White, J.G. & Jorgenson, J.W. Chemical analysis of single neurons by open tubular liquid chromatography. Mikrochim. Acta 92, 37–45 (1987).

    Article  Google Scholar 

  61. Kajiyama, S., Harada, K., Fukusaki, E. & Kobayashi, A. Single cell-based analysis of torenia petal pigments by a combination of ArF excimer laser micro sampling and nano-high performance liquid chromatography (HPLC)-mass spectrometry. J. Biosci. Bioeng. 102, 575–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Hsieh, S. et al. Separation and identification of peptides in single neurons by microcolumn liquid chromatography-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and postsource decay analysis. Anal. Chem. 70, 1847–1852 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Mitruka, B.M. & Alexander, M. Rapid and sensitive detection of bacteria by gas chromatography. Appl. Microbiol. 16, 636–640 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iliffe, T.M., McAdoo, D.J., Beyer, C.B. & Haber, B. Amino acid concentrations in the Aplysia nervous system: neurons with high glycine concentrations. J. Neurochem. 28, 1037–1042 (1977).

    Article  CAS  PubMed  Google Scholar 

  65. Powell, P.R. & Ewing, A.G. Recent advances in the application of capillary electrophoresis to neuroscience. Anal. Bioanal. Chem. 382, 581–591 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Whitmore, C.D. et al. Yoctomole analysis of ganglioside metabolism in PC12 cellular homogenates. Electrophoresis 28, 3100–3104 (2007). Fluorescent microscopy is combined with capillary electrophoresis for the detection of fluorescently labeled products of cellular catabolism. With yoctomole detection, this method allows low-abundance analytes to be measured in small individual cells.

    Article  CAS  PubMed  Google Scholar 

  67. Kostal, V. & Arriaga, E.A. Recent advances in the analysis of biological particles by capillary electrophoresis. Electrophoresis 29, 2578–2586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miao, H., Rubakhin, S.S., Scanlan, C.R., Wang, L. & Sweedler, J.V. D-aspartate as a putative cell-cell signaling molecule in the Aplysia californica central nervous system. J. Neurochem. 97, 595–606 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Fuller, R.R., Moroz, L.L., Gillette, R. & Sweedler, J.V. Single neuron analysis by capillary electrophoresis with fluorescence spectroscopy. Neuron 20, 173–181 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Hofstadler, S.A., Severs, J.C., Smith, R.D., Swanek, F.D. & Ewing, A.G. Analysis of single cells with capillary electrophoresis electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 10, 919–922 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Lapainis, T., Rubakhin, S.S. & Sweedler, J.V. Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal. Chem. 81, 5858–5864 (2009). A hyphenated capillary electrophoresis–electrospray ionization tandem MS platform combines high-efficiency separations and confident identification of metabolites and neurotransmitters in single cells and subcellular structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mellors, J.S., Jorabchi, K., Smith, L.M. & Ramsey, J.M. Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal. Chem. 82, 967–973 (2010). Description of a microfluidic device that performs continuous on-chip cell lyses with real-time electrophoretic separation and mass spectrometric analysis of proteins in individual cells—characteristics well-suited for SCMP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kraly, J.R., Holcomb, R.E., Guan, Q. & Henry, C.S. Review: microfluidic applications in metabolomics and metabolic profiling. Anal. Chim. Acta 653, 23–35 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jo, K. et al. Mass spectrometric imaging of peptide release from neuronal cells within microfluidic devices. Lab Chip 7, 1454–1460 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Cheng, W., Klauke, N., Sedgwick, H., Smith, G.L. & Cooper, J.M. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip 6, 1424–1431 (2006). A microelectrode device fully integrated in a microfluidic system is described that enables the real-time measurement of ionic and metabolic fluxes from individual electrically active and beating heart cells in combination with simultaneous in situ microscopy.

    Article  CAS  PubMed  Google Scholar 

  76. Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. USA 106, 14195–14200 (2009). Using the example of human monocytic cell analyses, an integrated and robust microfluidic platform allows encapsulation of single cells and reagents in independent aqueous microdroplets and enables the digital manipulation of these droplet reactors for high-throughput single-cell analyses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brehm-Stecher, B.F. & Johnson, E.A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu, H. et al. In vivo lipidomics using single-cell Raman spectroscopy. Available from Nature Precedings. (http://precedings.nature.com/documents/4428/version/1) (2010).

    Google Scholar 

  79. Rubakhin, S.S. & Sweedler, J.V. A mass spectrometry primer for mass spectrometry imaging. Methods Mol. Biol. 656, 21–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kurczy, M.E. et al. Mass spectrometry imaging of mating Tetrahymena show that changes in cell morphology regulate lipid domain formation. Proc. Natl. Acad. Sci. USA 107, 2751–2756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fletcher, J.S., Lockyer, N.P., Vaidyanathan, S. & Vickerman, J.C. TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C-60) primary ions. Anal. Chem. 79, 2199–2206 (2007). Using a breakthrough ion source technology, the third dimension is added to MS imaging of small molecules from a cell. Analysis of lipids and lipid fatty acid side chain distribution as a function of depth enables three-dimensional imaging of an X. laevis oocyte.

    Article  CAS  PubMed  Google Scholar 

  82. Monroe, E.B., Jurchen, J.C., Lee, J., Rubakhin, S.S. & Sweedler, J.V. Vitamin E imaging and localization in the neuronal membrane. J. Am. Chem. Soc. 127, 12152–12153 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Kaufmann, R., Hillenkamp, F., Nitsche, R., Schurmann, M. & Wechsung, R. The laser microprobe mass analyser (LAMMA): biomedical applications. Microsc. Acta Suppl. 2, 297–306 (1978).

    CAS  Google Scholar 

  84. Nordström, A., Want, E., Northen, T., Lehtiö, J. & Siuzdak, G. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal. Chem. 80, 421–429 (2008).

    Article  PubMed  CAS  Google Scholar 

  85. Kruse, R.A., Rubakhin, S.S., Romanova, E.V., Bohn, P.W. & Sweedler, J.V. Direct assay of Aplysia tissues and cells with laser desorption/ionization mass spectrometry on porous silicon. J. Mass Spectrom. 36, 1317–1322 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Northen, T.R. et al. Clathrate nanostructures for mass spectrometry. Nature 449, 1033–1036 (2007). A new approach to high-sensitivity, spatially defined mass analysis that uses ′initiator′ molecules trapped in nanostructured surfaces or ′clathrates′ to release and ionize intact molecules adsorbed on the surface via ion or laser irradiation.

    Article  CAS  PubMed  Google Scholar 

  87. Amantonico, A., Urban, P.L., Fagerer, S.R., Balabin, R.M. & Zenobi, R. Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms. Anal. Chem. 82, 7394–7400 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Shimizu, M., Levi-Schaffer, F., Ojima, N., Shingaki, T. & Masujima, T. A single-cell matrix-assisted laser desorption/ionization time-of-flight mass-spectroscopic assay of the cell-maturation process. Anal. Sci. 18, 107–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Rubakhin, S.S., Garden, R.W., Fuller, R.R. & Sweedler, J.V. Measuring the peptides in individual organelles with mass spectrometry. Nat. Biotechnol. 18, 172–175 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Rubakhin, S.S. & Sweedler, J.V. Quantitative measurements of cell-cell signaling peptides with single-cell MALDI MS. Anal. Chem. 80, 7128–7136 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bouschen, W., Schulz, O., Eikel, D. & Spengler, B. Matrix vapor deposition/recrystallization and dedicated spray preparation for high-resolution scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS) of tissue and single cells. Rapid Commun. Mass Spectrom. 24, 355–364 (2010). A nice optimization of the critical stages of sample preparation for MS-based chemical imaging of individual cultured human renal carcinoma cells with a spatial resolution of 2 μm.

    Article  CAS  PubMed  Google Scholar 

  92. Cooks, R.G., Ouyang, Z., Takats, Z. & Wiseman, J.M. Ambient mass spectrometry. Science 311, 1566–1570 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Mizuno, H., Tsuyama, N., Harada, T. & Masujima, T. Live single-cell video-mass spectrometry for cellular and subcellular molecular detection and cell classification. J. Mass Spectrom. 43, 1692–1700 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Nemes, P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Shrestha, B. & Vertes, A. In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 81, 8265–8271 (2009). Laser ablation of single cells through a sharpened optical fiber is used to detect metabolites by LAESI MS, which allows the exploration of metabolic variations in cell populations.

    Article  CAS  PubMed  Google Scholar 

  96. Bandura, D.R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Naik, A.K., Hanay, M.S., Hiebert, W.K., Feng, X.L. & Roukes, M.L. Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4, 445–450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gil-Santos, E. et al. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotechnol. 5, 641–645 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Cohen, D. et al. Chemical cytometry: fluorescence-based single-cell analysis. Annu. Rev. Anal. Chem. (Palo Alto Calif) 1, 165–190 (2008).

    Article  CAS  Google Scholar 

  100. Winkler, J., Sotiriadou, I., Chen, S., Hescheler, J. & Sachinidis, A. The potential of embryonic stem cells combined with -omics technologies as model systems for toxicology. Curr. Med. Chem. 16, 4814–4827 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Yamanaka, S. & Blau, H.M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Okita, K. & Yamanaka, S. Induction of pluripotency by defined factors. Exp. Cell Res. 316, 2565–2570 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by award CHE-04-00768 from the US National Science Foundation and P30 DA018310, 5RO1NS031609 and 5RO1DE018866 from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Science Foundation or National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan V Sweedler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubakhin, S., Romanova, E., Nemes, P. et al. Profiling metabolites and peptides in single cells. Nat Methods 8 (Suppl 4), S20–S29 (2011). https://doi.org/10.1038/nmeth.1549

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1549

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research