Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative analysis of fitness and genetic interactions in yeast on a genome scale


Global quantitative analysis of genetic interactions is a powerful approach for deciphering the roles of genes and mapping functional relationships among pathways. Using colony size as a proxy for fitness, we developed a method for measuring fitness-based genetic interactions from high-density arrays of yeast double mutants generated by synthetic genetic array (SGA) analysis. We identified several experimental sources of systematic variation and developed normalization strategies to obtain accurate single- and double-mutant fitness measurements, which rival the accuracy of other high-resolution studies. We applied the SGA score to examine the relationship between physical and genetic interaction networks, and we found that positive genetic interactions connect across functionally distinct protein complexes revealing a network of genetic suppression among loss-of-function alleles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The SGA score for measuring quantitative genetic interactions.
Figure 2: Evaluation of single-mutant fitness measures.
Figure 3: Evaluation of quantitative genetic interactions.
Figure 4: Evaluation of functional information derived from genetic interactions.
Figure 5: Analysis of genetic interactions within and between protein complexes.
Figure 6: Cross-complex genetic suppression network revealed by quantitative genetic interaction analysis.

Similar content being viewed by others


  1. Baryshnikova, A. et al. Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe . Methods Enzymol. 470, 146–180 (2010).

    Google Scholar 

  2. Dixon, S.J., Costanzo, M., Baryshnikova, A., Andrews, B. & Boone, C. Systematic mapping of genetic interaction networks. Annu. Rev. Genet. 470, 145–179 (2009).

    Google Scholar 

  3. Collins, S.R., Schuldiner, M., Krogan, N.J. & Weissman, J.S. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol. 7, R63 (2006).

    Article  Google Scholar 

  4. Breslow, D.K. et al. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat. Methods 5, 711–718 (2008).

    Article  CAS  Google Scholar 

  5. St Onge, R.P. et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 39, 199–206 (2007).

    Article  CAS  Google Scholar 

  6. Avery, L. & Wasserman, S. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet. 8, 312–316 (1992).

    Article  CAS  Google Scholar 

  7. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  Google Scholar 

  8. Drees, B.L. et al. Derivation of genetic interaction networks from quantitative phenotype data. Genome Biol. 6, R38 (2005).

    Article  Google Scholar 

  9. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  Google Scholar 

  10. Deutschbauer, A.M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    Article  CAS  Google Scholar 

  11. Breitkreutz, B.J. et al. The BioGRID interaction database: 2008 update. Nucleic Acids Res. 36, D637–D640 (2008).

    Article  CAS  Google Scholar 

  12. Myers, C.L., Barrett, D.R., Hibbs, M.A., Huttenhower, C. & Troyanskaya, O.G. Finding function: evaluation methods for functional genomic data. BMC Genomics 7, 187 (2006).

    Article  Google Scholar 

  13. Bandyopadhyay, S., Kelley, R., Krogan, N.J. & Ideker, T. Functional maps of protein complexes from quantitative genetic interaction data. PLOS Comput. Biol. 4, e1000065 (2008).

    Article  Google Scholar 

  14. Segre, D., Deluna, A., Church, G.M. & Kishony, R. Modular epistasis in yeast metabolism. Nat. Genet. 37, 77–83 (2005).

    Article  CAS  Google Scholar 

  15. Ungar, D., Oka, T., Krieger, M. & Hughson, F.M. Retrograde transport on the COG railway. Trends Cell Biol. 16, 113–120 (2006).

    Article  CAS  Google Scholar 

  16. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    Article  CAS  Google Scholar 

  17. Tarassov, K. et al. An in vivo map of the yeast protein interactome. Science 320, 1465–1470 (2008).

    Article  CAS  Google Scholar 

  18. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  Google Scholar 

  19. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae . Nature 440, 637–643 (2006).

    Article  CAS  Google Scholar 

  20. Mitchell, A.P.A. VAST staging area for regulatory proteins. Proc. Natl. Acad. Sci. USA 105, 7111–7112 (2008).

    Article  CAS  Google Scholar 

  21. Hayashi, M., Fukuzawa, T., Sorimachi, H. & Maeda, T. Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol. Cell. Biol. 25, 9478–9490 (2005).

    Article  CAS  Google Scholar 

  22. Barwell, K.J., Boysen, J.H., Xu, W. & Mitchell, A.P. Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans. Eukaryot. Cell 4, 890–899 (2005).

    Article  CAS  Google Scholar 

  23. Rothfels, K. et al. Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae . Mol. Cell. Biol. 25, 6772–6788 (2005).

    Article  CAS  Google Scholar 

  24. Kemp, H.A. & Sprague, G.F. Jr. Far3 and five interacting proteins prevent premature recovery from pheromone arrest in the budding yeast Saccharomyces cerevisiae . Mol. Cell. Biol. 23, 1750–1763 (2003).

    Article  CAS  Google Scholar 

  25. Goudreault, M. et al. A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol. Cell. Proteomics 8, 157–171 (2009).

    Article  CAS  Google Scholar 

  26. Posas, F. et al. The gene PPG encodes a novel yeast protein phosphatase involved in glycogen accumulation. J. Biol. Chem. 268, 1349–1354 (1993).

    CAS  PubMed  Google Scholar 

  27. Van Driessche, N. et al. Epistasis analysis with global transcriptional phenotypes. Nat. Genet. 37, 471–477 (2005).

    Article  CAS  Google Scholar 

  28. Dixon, S.J. et al. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc. Natl. Acad. Sci. USA 105, 16653–16658 (2008).

    Article  CAS  Google Scholar 

  29. Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–410 (2008).

    Article  CAS  Google Scholar 

  30. Babu, M. et al. Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes. Mol. Biosyst. 5, 1439–1455 (2009).

    Article  CAS  Google Scholar 

  31. Leek, J.T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733–739 (2010).

    Article  CAS  Google Scholar 

  32. He, X., Qian, W., Wang, Z., Li, Y. & Zhang, J. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat. Genet. 42, 272–276 (2010).

    Article  CAS  Google Scholar 

  33. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  34. Jasnos, L. & Korona, R. Epistatic buffering of fitness loss in yeast double deletion strains. Nat. Genet. 39, 550–554 (2007).

    Article  CAS  Google Scholar 

  35. Warringer, J., Ericson, E., Fernandez, L., Nerman, O. & Blomberg, A. High-resolution yeast phenomics resolves different physiological features in the saline response. Proc. Natl. Acad. Sci. USA 100, 15724–15729 (2003).

    Article  CAS  Google Scholar 

  36. Brauer, M.J. et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol. Biol. Cell 19, 352–367 (2008).

    Article  CAS  Google Scholar 

  37. Hartman, J.L.t. & Tippery, N.P. Systematic quantification of gene interactions by phenotypic array analysis. Genome Biol. 5, R49 (2004).

    Article  Google Scholar 

  38. Friesen, H. et al. Characterization of the yeast amphiphysins Rvs161p and Rvs167p reveals roles for the Rvs heterodimer in vivo. Mol. Biol. Cell 17, 1306–1321 (2006).

    Article  CAS  Google Scholar 

  39. Bellaoui, M. et al. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J. 22, 4304–4313 (2003).

    Article  CAS  Google Scholar 

  40. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    Article  CAS  Google Scholar 

Download references


We thank R. Mani, F. Roth, B. Papp, T. Maeda and T. Hays for helpful discussions and critical comments. This work was supported by Genome Canada through the Ontario Genomics Institute (2004-OGI-3-01), the Canadian Institutes of Health Research (GSP-415-67; C.B. and B.A.) (MOP-79368; G.W.B.), the US National Institutes of Health (1R01HG005084-01A1; C.L.M., Y.K. and S.B.) and the National Science Foundation (DBI 0953881, MCB 0918908; C.L.M. and Y.K.) and partially supported by a seed grant from the Minnesota Supercomputing Institute (C.L.M. and Y.K.).

Author information

Authors and Affiliations



M.C., C.L.M., C.B. and B.A. conceived and coordinated the project. C.L.M. and A.B. designed and implemented the algorithm. A.B., C.L.M., Y.K., J.K. and S.B. performed statistical analysis. J.-Y.Y., B.-J.S.L., J.O., G.W.B. and M.C. validated experiments. H.D. and K.T. analyzed and processed images. M.H., D.H., G.D.B. and O.G.T. provided statistical insight. A.-C.G. provided biological insight. M.C., C.L.M., C.B. and A.B. prepared the manuscript.

Corresponding authors

Correspondence to Brenda Andrews, Charles Boone or Chad L Myers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1–3 and Supplementary Notes 1–6 (PDF 10244 kb)

Supplementary Data 1

Single-mutant fitness standard. (XLS 514 kb)

Supplementary Data 2

Protein complex standard. (XLS 207 kb)

Supplementary Data 3

List of complex-complex pairs enriched for positive genetic interactions. (XLS 179 kb)

Supplementary Software

Matlab source code for the SGA score algorithm. (ZIP 186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baryshnikova, A., Costanzo, M., Kim, Y. et al. Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 7, 1017–1024 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing