Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chronic optical access through a polished and reinforced thinned skull

Abstract

We present a method to form an optical window in the mouse skull that spans millimeters and is stable for months without causing brain inflammation. This enabled us to repeatedly image blood flow in cortical capillaries of awake mice and determine long-range correlations in speed. We also repeatedly imaged dendritic spines, microglia and angioarchitecture, as well as used illumination to drive motor output via optogenetics and induce microstrokes via photosensitizers.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: PoRTS window procedure, optical properties and basic capabilities.
Figure 2: Long-range coherence of RBC-flow velocity in capillaries in the cortex of awake head-fixed mice through a PoRTS window.
Figure 3: Examples of cortical physiology evoked through the PoRTS window.

References

  1. 1

    Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. Nature 385, 161–165 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Levasseur, J.E., Wei, E.P., Raper, A.J., Kontos, A.A. & Patterson, J.L. Stroke 6, 308–317 (1975).

    CAS  Article  Google Scholar 

  3. 3

    Grutzendler, J., Kasthuri, N. & Gan, W.B. Nature 420, 812–816 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Trachtenberg, J.T. et al. Nature 420, 788–794 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Brown, C.E., Li, P., Boyd, J.D., Delaney, K.R. & Murphy, T.H. J. Neurosci. 27, 4101–4109 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Xu, H.T., Pan, F., Yang, G. & Gan, W.B. Nat. Neurosci. 10, 549–551 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Hauss-Wegrzyniak, B., Lynch, M.A., Vraniak, P.D. & Wenk, G.L. Exp. Neurol. 176, 336–341 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Sohler, T.P., Lothrop, G.N. & Forbes, H.S. J. Pharmacol. Exp. Ther. 71, 331–335 (1941).

    CAS  Google Scholar 

  9. 9

    Holtmaat, A. et al. Nat. Protoc. 4, 1128–1144 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Stoll, G. & Jander, S. Prog. Neurobiol. 58, 233–247 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Pekny, M. & Nilsson, M. Glia 50, 427–434 (2005).

    Article  Google Scholar 

  13. 13

    Fox, M.D. & Raichle, M.E. Nat. Rev. Neurosci. 8, 700–711 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Blinder, P., Shih, A.Y., Rafie, C.A. & Kleinfeld, D. Proc. Natl. Acad. Sci. USA 107, 12670–12675 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Sawinski, J. et al. Proc. Natl. Acad. Sci. USA 106, 19557–19562 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Jung, S. et al. Mol. Cell. Biol. 20, 4106–4114 (2010).

    Article  Google Scholar 

  17. 17

    Arenkiel, B.R. et al. Neuron 54, 205–218 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Masino, S.A., Kwon, M.C., Dory, Y. & Frostig, R.D. Proc. Natl. Acad. Sci. USA 90, 9998–10002 (1993).

    CAS  Article  Google Scholar 

  19. 19

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Kleinfeld, D. & Delaney, K.R. J. Comp. Neurol. 375, 89–108 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Denk, W. et al. J. Neurosci. Methods 54, 151–162 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Tsai, P.S. & Kleinfeld, D. in Methods for In Vivo Optical Imaging 2nd edn. (ed., R.D. Frostig) 59–115 (CRC Press, 2009).

    Google Scholar 

  23. 23

    Tsai, P.S. et al. Neuron 39, 27–41 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Nguyen, Q.-T., Dolnick, E.M., Driscoll, J. & Kleinfeld, D. in Methods for In Vivo Optical Imaging 2nd edn. (ed., R.D. Frostig) 117–142 (CRC Press, Boca Raton, 2009).

    Google Scholar 

  25. 25

    Nguyen, Q.-T., Tsai, P.S. & Kleinfeld, D. J. Neurosci. Methods 156, 351–359 (2006).

    Article  Google Scholar 

  26. 26

    Shih, A.Y. et al. J. Cereb. Blood Flow Metab. 29, 738–751 (2009).

    Article  Google Scholar 

  27. 27

    Shih, A.Y. et al. in Imaging in Neuroscience and Development (ed., R. Yuste) volume 2, chapter 15 (Cold Spring Harbor Laboratory Press, in the press).

  28. 28

    Valmianski, I. et al. J. Neurophysiol. 104, 1803–1811 (2010).

    Article  Google Scholar 

  29. 29

    Drew, P.J., Blinder, P., Cauwenberghs, G., Shih, A.Y. & Kleinfeld, D. J. Comput. Neurosci. 29, 5–11 (2010).

    Article  Google Scholar 

  30. 30

    McMenamin, P.G. J. Comp. Neurol. 405, 553–562 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Ferezou, I. et al. Neuron 56, 907–923 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Knutsen, P.M., Derdikman, D. & Ahissar, E. J. Neurophysiol. 93, 2294–2301 (2005).

    Article  Google Scholar 

  33. 33

    Nishimura, N., Schaffer, C.B., Friedman, B., Lyden, P.D. & Kleinfeld, D. Proc. Natl. Acad. Sci. USA 104, 365–370 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation Interference and Diffraction of Light 6th edn. (Pergamon Press, Oxford, 1980).

    Google Scholar 

Download references

Acknowledgements

We thank B. Friedman, C. Portera-Cailliau and K. Svoboda for critical comments on an early version of the manuscript, M. Fuentes and C. Petersen for advice on head fixation, D.N. Hill for discussions on data analysis, J. Lee and K. Yang for help with animal husbandry, J.D. Moore for discussions on optical stimulation, and S. Tayman for a gift of tin oxide. This work was supported by grants from the US National Institutes of Health (EB003832, MH085499, NS059832 and RR021907 to D.K., and NS066361 to K.A.) and the Dana Program in Brain and Immuno-imaging (to K.A.) and fellowships from the Israeli Science Foundation (to P.B.), the Canadian Institutes of Health Research and American Heart Association (to A.Y.S.), the Human Frontiers Scientific Program (to P.M.K.), and the US National Multiple Sclerosis Society (to D.D.).

Author information

Affiliations

Authors

Contributions

P.J.D., A.Y.S. and P.S.T. conceived the PoRTS window; J.D.D. and D.K. developed the imaging tools; K.A., D.D., P.J.D., D.K., A.Y.S. and P.S.T. designed the experiments; P.J.D., P.M.K., A.Y.S. and P.S.T. carried out the experiments; P.B., P.J.D., D.K. and P.S.T. analyzed data; and P.J.D., D.K. and A.Y.S. wrote the manuscript.

Corresponding author

Correspondence to David Kleinfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-10, Supplementary Note 1 (PDF 1711 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Drew, P., Shih, A., Driscoll, J. et al. Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7, 981–984 (2010). https://doi.org/10.1038/nmeth.1530

Download citation

Further reading

Search

Quick links