Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments

Abstract

We introduce magnetic torque tweezers, which enable direct single-molecule measurements of torque. Our measurements of the effective torsional stiffness C of dsDNA indicated a substantial force dependence, with C = 40 nm at low forces up to C = 100 nm at high forces. The initial torsional stiffness of RecA filaments was nearly twofold larger than that for dsDNA, yet at moderate torques further build-up of torsional strain was prevented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of magnetic torque tweezers and their operation.
Figure 2: Torque measurements for a 7.9 kbp dsDNA molecule in PBS buffer.
Figure 3: Measurements of RecA-DNA heteroduplex filaments.

Similar content being viewed by others

References

  1. Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A. & Croquette, V. Science 271, 1835–1837 (1996).

    Article  CAS  Google Scholar 

  2. Bustamante, C., Bryant, Z. & Smith, S.B. Nature 421, 423–427 (2003).

    Article  Google Scholar 

  3. Neuman, K.C. & Nagy, A. Nat. Methods 5, 491–505 (2008).

    Article  CAS  Google Scholar 

  4. Lipfert, J., Hao, X. & Dekker, N.H. Biophys. J. 96, 5040–5049 (2009).

    Article  CAS  Google Scholar 

  5. Celedon, A. et al. Nano Lett. 9, 1720–1725 (2009).

    Article  CAS  Google Scholar 

  6. Bryant, Z. et al. Nature 424, 338–341 (2003).

    Article  CAS  Google Scholar 

  7. La Porta, A. & Wang, M.D. Phys. Rev. Lett. 92, 190801 (2004).

    Article  Google Scholar 

  8. Oroszi, L., Galajda, P., Kirei, H., Bottka, S. & Ormos, P. Phys. Rev. Lett. 97, 058301 (2006).

    Article  Google Scholar 

  9. Forth, S. et al. Phys. Rev. Lett. 100, 148301 (2008).

    Article  Google Scholar 

  10. Allemand, J.F., Bensimon, D., Lavery, R. & Croquette, V. Proc. Natl. Acad. Sci. USA 95, 14152–14157 (1998).

    Article  CAS  Google Scholar 

  11. Strick, T. et al. Rep. Prog. Phys. 66, 1–45 (2003).

    Article  CAS  Google Scholar 

  12. Marko, J.F. Phys. Rev. E 76, 021926 (2007).

    Article  Google Scholar 

  13. Sheinin, M.Y. & Wang, M.D. Phys. Chem. Chem. Phys. 11, 4800–4803 (2009).

    Article  CAS  Google Scholar 

  14. Fujimoto, B.S. & Schurr, J.M. Nature 344, 175–177 (1990).

    Article  CAS  Google Scholar 

  15. Selvin, P.R. et al. Science 255, 82–85 (1992).

    Article  CAS  Google Scholar 

  16. Heath, P.J., Clendenning, J.B., Fujimoto, B.S. & Schurr, J.M. J. Mol. Biol. 260, 718–730 (1996).

    Article  CAS  Google Scholar 

  17. Moroz, J.D. & Nelson, P. Proc. Natl. Acad. Sci. USA 94, 14418–14422 (1997).

    Article  CAS  Google Scholar 

  18. Mosconi, F., Allemand, J.F., Bensimon, D. & Croquette, V. Phys. Rev. Lett. 102, 078301 (2009).

    Article  Google Scholar 

  19. Fulconis, R. et al. Biophys. J. 87, 2552–2563 (2004).

    Article  CAS  Google Scholar 

  20. van der Heijden, T. et al. Nucleic Acids Res. 33, 2099–2105 (2005).

    Article  CAS  Google Scholar 

  21. Chen, Z., Yang, H. & Pavletich, N.P. Nature 453, 489–494 (2008).

    Article  CAS  Google Scholar 

  22. Koster, D.A., Croquette, V., Dekker, C., Shuman, S. & Dekker, N.H. Nature 434, 671–674 (2005).

    Article  CAS  Google Scholar 

  23. Crut, A., Nair, P.A., Koster, D.A., Shuman, S. & Dekker, N.H. Proc. Natl. Acad. Sci. USA 105, 6894–6899 (2008).

    Article  CAS  Google Scholar 

  24. Lipfert, J., Koster, D.A., Vilfan, I.D., Hage, S. & Dekker, N.H. Methods Mol. Biol. 582, 71–89 (2009).

    Article  CAS  Google Scholar 

  25. Gosse, C. & Croquette, V. Biophys. J. 82, 3314–3329 (2002).

    Article  CAS  Google Scholar 

  26. te Velthuis, A.J., Kerssemakers, J.W., Lipfert, J. & Dekker, N.H. Biophys. J. 99, 1292–1302 (2010).

    Article  CAS  Google Scholar 

  27. Czerwinski, F., Richardson, A.C. & Oddershede, L.B. Opt. Express 17, 13255–13269 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Rojer for help with initial measurements, J. van der Does, D. de Roos and J. Beekman for help with instrumentation, and S. Hage and S. Donkers for providing DNA constructs. This work was supported by the Netherlands Organization for Scientific Research (Nederlandse Organisatie voor Wetenschappelijk Onderzoek), Delft University of Technology and the European Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.L., J.W.J.K. and N.H.D. designed the study, J.L. and T.J. performed the experiments, J.W.J.K. wrote the angular tracking routine and J.L. and N.H.D. wrote the manuscript.

Corresponding author

Correspondence to Nynke H Dekker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipfert, J., Kerssemakers, J., Jager, T. et al. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat Methods 7, 977–980 (2010). https://doi.org/10.1038/nmeth.1520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing