Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors


We present a flexible and highly specific targeting method for lentiviral vectors based on single-chain antibodies recognizing cell-surface antigens. We generated lentiviral vectors specific for human CD105+ endothelial cells, human CD133+ hematopoietic progenitors and mouse GluA-expressing neurons. Lentiviral vectors specific for CD105 or for CD20 transduced their target cells as efficiently as VSV-G pseudotyped vectors but discriminated between endothelial cells and lymphocytes in mixed cultures. CD133-targeted vectors transduced CD133+ cultured hematopoietic progenitor cells more efficiently than VSV-G pseudotyped vectors, resulting in stable long-term transduction. Lentiviral vectors targeted to the glutamate receptor subunits GluA2 and GluA4 exhibited more than 94% specificity for neurons in cerebellar cultures and when injected into the adult mouse brain. We observed neuron-specific gene modification upon transfer of the Cre recombinase gene into the hippocampus of reporter mice. This approach allowed targeted gene transfer to many cell types of interest with an unprecedented degree of specificity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of targeted lentiviral vectors.
Figure 2: Selective and efficient transduction of primary endothelial cells by CD105-LV.
Figure 3: Transduction of primary human HPCs via CD133.
Figure 4: Specific gene transfer to primary neurons using GluA2/4-LV.
Figure 5: In vivo application of GluA2/4-LV.


  1. Cockrell, A.S. & Kafri, T. Gene delivery by lentivirus vectors. Mol. Biotechnol. 36, 184–204 (2007).

    CAS  Article  Google Scholar 

  2. Singer, O. & Verma, I.M. Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr. Gene Ther. 8, 483–488 (2008).

    CAS  Article  Google Scholar 

  3. Naldini, L. Medicine. A comeback for gene therapy. Science 326, 805–806 (2009).

    CAS  Article  Google Scholar 

  4. Frecha, C., Szecsi, J., Cosset, F.L. & Verhoeyen, E. Strategies for targeting lentiviral vectors. Curr. Gene Ther. 8, 449–460 (2008).

    CAS  Article  Google Scholar 

  5. Wong, L.F. et al. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum. Gene Ther. 17, 1–9 (2006).

    CAS  Article  Google Scholar 

  6. Meunier, A. & Pohl, M. Lentiviral vectors for gene transfer into the spinal cord glial cells. Gene Ther. 16, 476–482 (2009).

    CAS  Article  Google Scholar 

  7. Buchholz, C.J., Muhlebach, M.D. & Cichutek, K. Lentiviral vectors with measles virus glycoproteins—dream team for gene transfer? Trends Biotechnol. 27, 259–265 (2009).

    CAS  Article  Google Scholar 

  8. Morizono, K. et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat. Med. 11, 346–352 (2005).

    CAS  Article  Google Scholar 

  9. Yang, L., Bailey, L., Baltimore, D. & Wang, P. Targeting lentiviral vectors to specific cell types in vivo. Proc. Natl. Acad. Sci. USA 103, 11479–11484 (2006).

    CAS  Article  Google Scholar 

  10. Nakamura, T. et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat. Biotechnol. 23, 209–214 (2005).

    CAS  Article  Google Scholar 

  11. Funke, S. et al. Targeted cell entry of lentiviral vectors. Mol. Ther. 16, 1427–1436 (2008).

    CAS  Article  Google Scholar 

  12. Funke, S. et al. Pseudotyping lentiviral vectors with the wild-type measles virus glycoproteins improves titer and selectivity. Gene Ther. 16, 700–705 (2009).

    CAS  Article  Google Scholar 

  13. Fonsatti, E. & Maio, M. Highlights on endoglin (CD105): from basic findings towards clinical applications in human cancer. J. Transl. Med. 2, 18 (2004).

    Article  Google Scholar 

  14. Shmelkov, S.V., St Clair, R., Lyden, D. & Rafii, S. AC133/CD133/Prominin-1. Int. J. Biochem. Cell Biol. 37, 715–719 (2005).

    CAS  Article  Google Scholar 

  15. Mizrak, D., Brittan, M. & Alison, M.R. CD133: molecule of the moment. J. Pathol. 214, 3–9 (2008).

    CAS  Article  Google Scholar 

  16. Yanagi, Y., Takeda, M., Ohno, S. & Hashiguchi, T. Measles virus receptors. Curr. Top. Microbiol. Immunol. 329, 13–30 (2009).

    CAS  PubMed  Google Scholar 

  17. Baum, C., Hegewisch-Becker, S., Eckert, H.G., Stocking, C. & Ostertag, W. Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells. J. Virol. 69, 7541–7547 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pasternack, A. et al. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain. J. Biol. Chem. 277, 49662–49667 (2002).

    CAS  Article  Google Scholar 

  19. Carman, C.V. & Springer, T.A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol. 167, 377–388 (2004).

    CAS  Article  Google Scholar 

  20. Hess, K.L. et al. Human and murine high endothelial venule cells phagocytose apoptotic leukocytes. Exp. Cell Res. 236, 404–411 (1997).

    CAS  Article  Google Scholar 

  21. Ozawa, S., Kamiya, H. & Tsuzuki, K. Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54, 581–618 (1998).

    CAS  Article  Google Scholar 

  22. Sprengel, R. Role of AMPA receptors in synaptic plasticity. Cell Tissue Res. 326, 447–455 (2006).

    CAS  Article  Google Scholar 

  23. Fuchs, E.C. et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53, 591–604 (2007).

    CAS  Article  Google Scholar 

  24. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    CAS  Article  Google Scholar 

  25. Rolls, M.M., Webster, P., Balba, N.H. & Rose, J.K. Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self-replicating RNA. Cell 79, 497–506 (1994).

    CAS  Article  Google Scholar 

  26. Kim, Y.S. et al. Transduction of human primitive repopulating hematopoietic cells with lentiviral vectors pseudotyped with various envelope proteins. Mol. Ther. 18, 1310–1317 (2010).

    CAS  Article  Google Scholar 

  27. Pariente, N., Mao, S.H., Morizono, K. & Chen, I.S. Efficient targeted transduction of primary human endothelial cells with dual-targeted lentiviral vectors. J. Gene Med. 10, 242–248 (2008).

    CAS  Article  Google Scholar 

  28. Lang, P. et al. Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. Br. J. Haematol. 124, 72–79 (2004).

    Article  Google Scholar 

  29. Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 423, 396–401 (2004).

    Article  Google Scholar 

  30. Brown, B.D. & Naldini, L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat. Rev. Genet. 10, 578–585 (2009).

    CAS  Article  Google Scholar 

  31. Jespersen, L.K., Kuusinen, A., Orellana, A., Keinanen, K. & Engberg, J. Use of proteoliposomes to generate phage antibodies against native AMPA receptor. Eur. J. Biochem. 267, 1382–1389 (2000).

    CAS  Article  Google Scholar 

  32. Volkel, T., Muller, R. & Kontermann, R.E. Isolation of endothelial cell-specific human antibodies from a novel fully synthetic scFv library. Biochem. Biophys. Res. Commun. 317, 515–521 (2004).

    CAS  Article  Google Scholar 

  33. Demaison, C. et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency (correction of immunodeficiency) virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum. Gene Ther. 13, 803–813 (2002).

    CAS  Article  Google Scholar 

  34. Sun, Y., Finger, C., Alvarez-Vallina, L., Cichutek, K. & Buchholz, C.J. Chronic gene delivery of interferon-inducible protein 10 through replication-competent retrovirus vectors suppresses tumor growth. Cancer Gene Ther. 12, 900–912 (2005).

    CAS  Article  Google Scholar 

  35. Steinbach, J.P. et al. Hypersensitivity to seizures in beta-amyloid precursor protein deficient mice. Cell Death Differ. 5, 858–866 (1998).

    CAS  Article  Google Scholar 

  36. Liehl, B. et al. Simian immunodeficiency virus vector pseudotypes differ in transduction efficiency and target cell specificity in brain. Gene Ther. 14, 1330–1343 (2007).

    CAS  Article  Google Scholar 

  37. Fuchs, E.C. et al. Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation. Proc. Natl. Acad. Sci. USA 98, 3571–3576 (2001).

    CAS  Article  Google Scholar 

  38. Cetin, A., Komai, S., Eliava, M., Seeburg, P.H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nat. Protoc. 1, 3166–3173 (2006).

    CAS  Article  Google Scholar 

Download references


This work was supported by grants from the Priority Programme “Mechanisms of gene vector entry and persistence” of the Deutsche Forschungsgemeinschaft to C.J.B. and K.C. and from the 7th European Community programme project Persisting Transgenesis (Persist) to C.J.B. U.C.M. was supported by grants of the Deutsche Forschungsgemeinschaft (MU 1457/8-1) and the “Nationales Genomforschungsnetz” (01GS08128). T.A. is supported by the graduate study program GK1172 Biologicals of the Goethe University Frankfurt AM.

Author information

Authors and Affiliations



B.A., T.A. and S.K. designed and performed experiments and contributed to writing of the manuscript. J.H., A.C., J.B., I.C.S., R.C.M. and H.P. performed experiments. R.E.K., U.K., I.C.D.J. and K.K. contributed protocols and reagents. C.H. and H.M. supervised work. U.C.M. supervised work and contributed to writing of the manuscript. K.C. acquired grants. C.J.B. conceived and designed the study, acquired grants, supervised work and wrote the manuscript.

Corresponding author

Correspondence to Christian J Buchholz.

Ethics declarations

Competing interests

I.C.D.J. is an employee of Miltenyi Biotec GmbH. S.K., K.C. and C.J.B. are listed as inventors in an international Patent Cooperation Treaty European patent application (PCT/EP2007/008384) assigned to the Paul Ehrlich Institut, which includes as claims the generation of targeted lentiviral vectors.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–2 (PDF 928 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anliker, B., Abel, T., Kneissl, S. et al. Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors. Nat Methods 7, 929–935 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing