Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans

An Erratum to this article was published on 29 November 2010

This article has been updated

Abstract

Efficient experimental strategies are needed to validate computationally predicted microRNA (miRNA) target genes. Here we present a large-scale targeted proteomics approach to validate predicted miRNA targets in Caenorhabditis elegans. Using selected reaction monitoring (SRM), we quantified 161 proteins of interest in extracts from wild-type and let-7 mutant worms. We demonstrate by independent experimental downstream analyses such as genetic interaction, as well as polysomal profiling and luciferase assays, that validation by targeted proteomics substantially enriched for biologically relevant let-7 interactors. For example, we found that the zinc finger protein ZTF-7 was a bona fide let-7 miRNA target. We also validated predicted miR-58 targets, demonstrating that this approach is adaptable to other miRNAs. We propose that targeted mass spectrometry can be applied generally to validate candidate lists generated by computational methods or in large-scale experiments, and that the described strategy should be readily adaptable to other organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy and workflow for quantification of potential C. elegans let-7–interacting genes.
Figure 2: Identification of proteins regulated by let-7.
Figure 3: Genes displaying protein changes in let-7(n2853) mutants are enriched in let-7 suppressors.
Figure 4: Comparison of let-7–dependent changes in protein and transcript amounts of candidate let-7 miRNA targets.
Figure 5: ztf-7 (F46B6.7) is a bona fide let-7 target gene.
Figure 6: Predicted miR-58 targets are significantly upregulated in mir-58(n4640) mutants.

Similar content being viewed by others

Change history

  • 09 November 2010

    In the version of this article initially published, the reported P values were incorrectly written and an incorrect wording change was inadvertently made to the Figure 1 legend. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lai, E.C. miRNAs: whys and wherefores of miRNA-mediated regulation. Curr. Biol. 15, R458–R460 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Ørom, U.A. & Lund, A.H. Experimental identification of microRNA targets. Gene 451, 1–5 (2010).

    Article  PubMed  Google Scholar 

  4. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hendrickson, D.G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, e1000238 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Picotti, P., Bodenmiller, B., Mueller, L.N., Domon, B. & Aebersold, R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795–806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Picotti, P. et al. A database of mass spectrometric assays for the yeast proteome. Nat. Methods 5, 913–914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mallick, P. et al. Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol. 25, 125–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Pasquinelli, A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Bussing, I., Slack, F. & Großhans, H. let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 14, 400–409 (2008).

    Article  PubMed  Google Scholar 

  13. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Schrimpf, S.P. et al. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol. 7, e48 (2009).

    Article  PubMed  Google Scholar 

  15. Reiter, L. et al. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol. Cell. Proteomics 8, 2405–2417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Großhans, H., Johnson, T., Reinert, K., Gerstein, M. & Slack, F. The temporal patterning microRNA regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell 8, 321–330 (2005).

    Article  PubMed  Google Scholar 

  17. Vasudevan, S., Tong, Y. & Steitz, J.A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Ding, X.C. & Großhans, H. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J. 28, 213–222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Ruby, J.G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Nottrott, S., Simard, M.J. & Richter, J.D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat. Struct. Mol. Biol. 13, 1108–1114 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Andachi, Y. A novel biochemical method to identify target genes of individual microRNAs: Identification of a new Caenorhabditis elegans let-7 target. RNA 14, 2440–2451 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alvarez-Saavedra, E. & Horvitz, H.R. Many families of C. elegans microRNAs are not essential for development or viability. Curr. Biol. 20, 367–373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krijgsveld, J. et al. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol. 21, 927–931 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Picotti, P. et al. High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat. Methods 7, 43–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Addona, T.A. et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 27, 633–641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mueller, L.N., Brusniak, M., Mani, D.R. & Aebersold, R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J. Proteome Res. 7, 51–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Brunner, E. et al. A high-quality catalog of the Drosophila melanogaster proteome. Nat. Biotechnol. 25, 576–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Baerenfaller, K. et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320, 938–941 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Riddle, D.L., Blumenthal, T., Meyer, B.J. & Priess, J.R. C. elegans II (CSHL Press, 1997).

  32. Miska, E.A. et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 3, e215 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ding, L., Spencer, A., Morita, K. & Han, M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the Argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol. Cell 19, 437–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shiio, Y. & Aebersold, R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat. Protoc. 1, 139–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Fraser, A.G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Rual, J.F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mangone, M., Macmenamin, P., Zegar, C., Piano, F. & Gunsalus, K.C. UTRome.org: a platform for 3′UTR biology in C. elegans. Nucleic Acids Res. 36, D57–D62 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Lall, S. et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr. Biol. 16, 460–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Stark, A., Brennecke, J., Bushati, N., Russell, R. & Cohen, S. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Griffiths-Jones, S., Saini, H.K., Dongen, S.V. & Enright, A.J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe, Y. et al. Computational analysis of microRNA targets in Caenorhabditis elegans. Gene 365, 2–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Johnson, S.M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    CAS  PubMed  Google Scholar 

  47. Ding, X.C., Slack, F.J. & Grosshans, H. The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation. Cell Cycle 7, 3083–3090 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Abrahante, J.E. et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev. Cell 4, 625–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Slack, F.J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Lin, S.Y. et al. The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev. Cell 4, 639–650 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Papadopoulos, G.L., Reczko, M., Simossis, V.A., Sethupathy, P. & Hatzigeorgiou, A.G. The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res. 37, D155–D158 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Xiao, F. et al. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37, D105–D110 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Stajich, J.E. et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 12, 1611–1618 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Keller, A., Eng, J., Zhang, N., Li, X. & Aebersold, R. A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 1, 2005.0017 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gerber, A.P., Herschlag, D. & Brown, P.O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, E79 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R.F. Ketting (Hubrecht Institute, Utrecht) and B.B. Tops (Utrecht University, Utrecht) for providing the metabolically labeled C. elegans sample, A. Stark (Research Institute of Molecular Pathology, Vienna) for sharing miRNA target predictions for C. elegans, M. Moser for the assistance with the reverse transcription–quantitative PCR assays, B. Roschitzky and B. Gerrits for technical support, H. Rehrauer for statistical support, R. Schlapbach for access to the Functional Genomics Center Zurich, members of the Hengartner, Aebersold, Grosshans and Miska laboratories and E. Brunner and the whole Quantitative Model Organism Proteomics team for insightful discussion and comments on the manuscript. This work was funded in part by the University of Zurich Research Priority Program in Systems Biology/Functional Genomics, the Swiss National Science Foundation, the Gerbert R¨f Foundation, the Swiss initiative for systems biology, SystemsX, the Ernst Hadorn Foundation and the ETH Zurich. R.A. was supported by the European Research Council grant ERC-2008-AdG 233226. M.J. and L.R. were supported by a grant from the Research Foundation of the University of Zurich. M.J. was also supported by a fellowship from the Roche Research Foundation. P.P. was supported by the Marie Curie Intra-European fellowship. V.L. was supported by a grant from F. Hoffmann-La Roche Ltd. to the Competence Center for Systems Physiology and Metabolic Diseases. H.G. was supported by the Swiss National Research Foundation, the Novartis Research Foundation and by an ERC Starting Investigator grant (miRTurn). X.C.D. was supported by a Boehringer Ingelheim Funds PhD Student fellowship. C.B., N.J.L. and E.A.M. were supported by a Cancer Research UK Programme grant to E.A.M.

Author information

Authors and Affiliations

Authors

Contributions

M.J., L.R., M.O.H. and R.A. designed the experiments and wrote the paper. L.R. and M.J. did the majority of the data analysis. M.J. did the majority of the experiments. P.P. and V.L. contributed to and supervised the SRM experiments. E.B. contributed to the RNAi and reverse transcription–quantitative PCR experiments. B.A.H. and X.C.D. performed the polysomal profiling experiments. C.B. and N.J.L. contributed to the reporter assays. S.P.S. and M.W. provided the C. elegans proteome atlas. H.G. and E.A.M. provided critical input on the manuscript, contributed to the experimental design and the data analysis. M.O.H. and R.A. supervised the project.

Corresponding authors

Correspondence to Ruedi Aebersold or Michael O Hengartner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 2–7 and 10–12, Supplementary Results 1–2, Supplementary Discussion (PDF 1263 kb)

Supplementary Table 1

let-7 candidate list. (XLS 127 kb)

Supplementary Table 8

Transitions and input parameters for the SRM-ICAT quantifications of potential let-7 targets and neutral controls. (XLS 427 kb)

Supplementary Table 9

Transitions and input parameters for the SRM quantifications of predicted miR-58 targets and random negative controls. (XLS 794 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovanovic, M., Reiter, L., Picotti, P. et al. A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nat Methods 7, 837–842 (2010). https://doi.org/10.1038/nmeth.1504

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1504

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research