Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue

Abstract

Measurements of oxygen partial pressure (pO2) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO2 measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO2 measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon–enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 μm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO2, opening many possibilities for functional metabolic brain studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphorescence detection procedure.
Figure 2: Measurement of pO2 in cortical microvasculature.
Figure 3: Measurement of pO2 in cortical tissue.
Figure 4: Simultaneous measurement of pO2 in cortical vasculature and tissue.

Similar content being viewed by others

References

  1. Heeger, D.J. & Ress, D. What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 3, 142–151 (2002).

    Article  CAS  Google Scholar 

  2. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  Google Scholar 

  3. Takano, T. et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nat. Neurosci. 10, 754–762 (2007).

    Article  CAS  Google Scholar 

  4. Erecinska, M. & Silver, I.A. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276 (2001).

    Article  CAS  Google Scholar 

  5. Vovenko, E. Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats. Pflugers Arch. 437, 617–623 (1999).

    Article  CAS  Google Scholar 

  6. Masamoto, K., Takizawa, N., Kobayashi, H., Oka, K. & Tanishita, K. Dual responses of tissue partial pressure of oxygen after functional stimulation in rat somatosensory cortex. Brain Res. 979, 104–113 (2003).

    Article  CAS  Google Scholar 

  7. Sharan, M., Vovenko, E.P., Vadapalli, A., Popel, A.S. & Pittman, R.N. Experimental and theoretical studies of oxygen gradients in rat pial microvessels. J. Cereb. Blood Flow Metab. 28, 1597–1604 (2008).

    Article  Google Scholar 

  8. Gordon, G.R., Choi, H.B., Rungta, R.L., Ellis-Davies, G.C. & MacVicar, B.A. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456, 745–749 (2008).

    Article  CAS  Google Scholar 

  9. Koch, C.J. Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5. Methods Enzymol. 352, 3–31 (2002).

    Article  CAS  Google Scholar 

  10. Krishna, M.C. et al. Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. Proc. Natl. Acad. Sci. USA 99, 2216–2221 (2002).

    Article  CAS  Google Scholar 

  11. Swartz, H.M. & Clarkson, R.B. The measurement of oxygen in vivo using EPR techniques. Phys. Med. Biol. 43, 1957–1975 (1998).

    Article  CAS  Google Scholar 

  12. Vanzetta, I. & Grinvald, A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286, 1555–1558 (1999).

    Article  CAS  Google Scholar 

  13. Wang, L.V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 3, 503–509 (2009).

    Article  CAS  Google Scholar 

  14. Fu, D., Matthews, T.E., Ye, T., Piletic, I.R. & Warren, W.S. Label-free in vivo optical imaging of microvasculature and oxygenation level. J. Biomed. Opt. 13, 040503 (2008).

    Article  Google Scholar 

  15. Vanderkooi, J.M., Maniara, G., Green, T.J. & Wilson, D.F. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J. Biol. Chem. 262, 5476–5482 (1987).

    CAS  PubMed  Google Scholar 

  16. Mik, E.G., Johannes, T. & Ince, C. Monitoring of renal venous pO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique. Am. J. Physiol. Renal Physiol. 294, F676–F681 (2008).

    Article  CAS  Google Scholar 

  17. Torres Filho, I.P. & Intaglietta, M. Microvessel pO2 measurements by phosphorescence decay method. Am. J. Physiol. 265, H1434–H1438 (1993).

    CAS  PubMed  Google Scholar 

  18. Ances, B.M., Wilson, D.F., Greenberg, J.H. & Detre, J.A. Dynamic changes in cerebral blood flow, O2 tension, and calculated cerebral metabolic rate of O2 during functional activation using oxygen phosphorescence quenching. J. Cereb. Blood Flow Metab. 21, 511–516 (2001).

    Article  CAS  Google Scholar 

  19. Pastuszko, A. et al. Effects of graded levels of tissue oxygen pressure on dopamine metabolism in the striatum of newborn piglets. J. Neurochem. 60, 161–166 (1993).

    Article  CAS  Google Scholar 

  20. Shonat, R.D., Wachman, E.S., Niu, W., Koretsky, A.P. & Farkas, D.L. Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope. Biophys. J. 73, 1223–1231 (1997).

    Article  CAS  Google Scholar 

  21. Golub, A.S. & Pittman, R.N. pO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification. Am. J. Physiol. Heart Circ. Physiol. 294, H2905–H2916 (2008).

    Article  CAS  Google Scholar 

  22. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  23. Estrada, A.D., Ponticorvo, A., Ford, T.N. & Dunn, A.K. Microvascular oxygen quantification using two-photon microscopy. Opt. Lett. 33, 1038–1040 (2008).

    Article  CAS  Google Scholar 

  24. Mik, E.G., van Leeuwen, T.G., Raat, N.J. & Ince, C. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements. J. Appl. Physiol. 97, 1962–1969 (2004).

    Article  Google Scholar 

  25. Finikova, O.S. et al. Oxygen microscopy by two-photon-excited phosphorescence. ChemPhysChem 9, 1673–1679 (2008).

    Article  CAS  Google Scholar 

  26. Lebedev, A.Y. et al. Dendritic phosphorescent probes for oxygen imaging in biological systems. ACS Appl. Mater. Interfaces 1, 1292–1304 (2009).

    Article  CAS  Google Scholar 

  27. Padnick, L.B., Linsenmeier, R.A. & Goldstick, T.K. Oxygenation of the cat primary visual cortex. J. Appl. Physiol. 86, 1490–1496 (1999).

    Article  CAS  Google Scholar 

  28. Hu, S., Maslov, K., Tsytsarev, V. & Wang, L.V. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J. Biomed. Opt. 14, 040503 (2009).

    Article  Google Scholar 

  29. Srinivasan, V.J. et al. Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography. Opt. Lett. 34, 3086–3088 (2009).

    Article  Google Scholar 

  30. Fang, Q. et al. Oxygen advection and diffusion in a three-dimensional vascular anatomical network. Opt. Express 16, 17530–17541 (2008).

    Article  CAS  Google Scholar 

  31. Lebedev, A.Y., Troxler, T. & Vinogradov, S.A. Design of metalloporphyrin-based dendritic nanoprobes for two-photon microscopy of oxygen. J. Porphyr. Phthalocyanines 12, 1261–1269 (2008).

    Article  CAS  Google Scholar 

  32. Rozhkov, V., Wilson, D.F. & Vinogradov, S.A. Phosphorescent Pd porphyrin-dendrimers: tuning core accessibility by varying the hydrophobicity of the dendritic matrix. Macromolecules 35, 1991–1993 (2002).

    Article  CAS  Google Scholar 

  33. Khajehpour, M. et al. Accessibility of oxygen with respect to the heme pocket in horseradish peroxidase. Proteins 53, 656–666 (2003).

    Article  CAS  Google Scholar 

  34. Vinogradov, S.A., Fernandez-Searra, M.A., Dugan, B.W. & Wilson, D.F. Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples. Rev. Sci. Instrum. 72, 3396–3406 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Wu for performing the rat surgery, C. Ayata and G. Boas for critically reading the manuscript and support from US National Institutes of Health grants R01NS057476, P50NS010828, P01NS055104, R01EB000790, K99NS067050, R01HL081273 and R01EB007279 and American Heart Association grant 0855772D.

Author information

Authors and Affiliations

Authors

Contributions

S.S., M.A.Y. and V.J.S. designed the microscope. E.R. synthesized the probe. S.S., M.A.Y., E.T.M., A.D., K.A. and S.R. performed experiments. S.S., D.A.B. and S.A.V. analyzed the data. D.A.B., S.A.V., E.H.L., S.S. and A.D. conceptualized and directed the research project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Sergei A Vinogradov or David A Boas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 2292 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakadžić, S., Roussakis, E., Yaseen, M. et al. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat Methods 7, 755–759 (2010). https://doi.org/10.1038/nmeth.1490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing