Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Rationally improving LOV domain–based photoswitches

Abstract

Genetically encoded protein photosensors are promising tools for engineering optical control of cellular behavior; we are only beginning to understand how to couple these light detectors to effectors of choice. Here we report a method that increases the dynamic range of an artificial photoswitch based on the LOV2 domain of Avena sativa phototropin 1 (AsLOV2). This approach can potentially be used to improve many AsLOV2-based photoswitches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conformational and binding equilibria in AsLOV2 and LovTAP.
Figure 2: Mutational stabilization of the LOV-Jα association and its effect on DNA-binding activity in LovTAP.

Similar content being viewed by others

References

  1. Gorostiza, P. & Isacoff, E.Y. Science 322, 395–399 (2008).

    Article  CAS  Google Scholar 

  2. Strickland, D., Moffat, K. & Sosnick, T.R. Proc. Natl. Acad. Sci. USA 105, 10709–10714 (2008).

    Article  CAS  Google Scholar 

  3. Lee, J. et al. Science 322, 438–442 (2008).

    Article  CAS  Google Scholar 

  4. Möglich, A., Ayers, R.A. & Moffat, K. J. Mol. Biol. 385, 1433–1444 (2009).

    Article  Google Scholar 

  5. Wu, Y.I. et al. Nature 461, 104–108 (2009).

    Article  CAS  Google Scholar 

  6. Levskaya, A., Weiner, O.D., Lim, W.A. & Voigt, C.A. Nature 461, 997–1001 (2009).

    Article  CAS  Google Scholar 

  7. Yazawa, M., Sadaghiani, A.M., Hsueh, B. & Dolmetsch, R.E. Nat. Biotechnol. 27, 941–945 (2009).

    Article  CAS  Google Scholar 

  8. Möglich, A., Ayers, R.A. & Moffat, K. Structure 17, 1282–1294 (2009).

    Article  Google Scholar 

  9. Huala, E. et al. Science 278, 2120–2123 (1997).

    Article  CAS  Google Scholar 

  10. Christie, J.M. et al. Science 282, 1698–1701 (1998).

    Article  CAS  Google Scholar 

  11. Salomon, M., Christie, J.M., Knieb, E., Lempert, U. & Briggs, W.R. Biochemistry 39, 9401–9410 (2000).

    Article  CAS  Google Scholar 

  12. Crosson, S. & Moffat, K. Plant Cell 14, 1067–1075 (2002).

    Article  CAS  Google Scholar 

  13. Kaiserli, E., Sullivan, S., Jones, M.A., Feeney, K.A. & Christie, J.M. Plant Cell 21, 3226–3244 (2009).

    Article  CAS  Google Scholar 

  14. Harper, S.M., Neil, L.C. & Gardner, K.H. Science 301, 1541–1544 (2003).

    Article  CAS  Google Scholar 

  15. Harper, S.M., Christie, J.M. & Gardner, K.H. Biochemistry 43, 16184–16192 (2004).

    Article  CAS  Google Scholar 

  16. Halavaty, A.S. & Moffat, K. Biochemistry 46, 14001–14009 (2007).

    Article  CAS  Google Scholar 

  17. Yao, X., Rosen, M.K. & Gardner, K.H. Nat. Chem. Biol. 4, 491–497 (2008).

    Article  CAS  Google Scholar 

  18. Vallée-Bélisle, A., Ricci, F. & Plaxco, K.W. Proc. Natl. Acad. Sci. USA 106, 13802–13807 (2009).

    Article  Google Scholar 

  19. Muñoz, V. & Serrano, L. Nat. Struct. Biol. 1, 399–409 (1994).

    Article  Google Scholar 

  20. Selzer, T., Albeck, S. & Schreiber, G. Nat. Struct. Biol. 7, 537–541 (2000).

    Article  CAS  Google Scholar 

  21. Carver, J.P. & Richards, R.E. J. Magn. Reson. 6, 89–105 (1972).

    CAS  Google Scholar 

  22. Palmer, A.G., Kroenke, C.D. & Loria, J.P. Methods Enzymol. 339, 204–238 (2001).

    Article  CAS  Google Scholar 

  23. Delaglio, F. et al. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  24. Johnson, B.A. & Blevins, R.A. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  25. Loria, J.P., Rance, M. & Palmer, A.G. J. Am. Chem. Soc. 121, 2331–2332 (1999).

    Article  CAS  Google Scholar 

  26. Tollinger, M., Skrynnikov, N.R., Mulder, F.A., Forman-Kay, J.D. & Kay, L.E. J. Am. Chem. Soc. 123, 11341–11352 (2001).

    Article  CAS  Google Scholar 

  27. Grzesiek, S. & Bax, A. J. Am. Chem. Soc. 114, 6291–6293 (1992).

    Article  CAS  Google Scholar 

  28. Kay, L.E., Xu, G.Y. & Yamazaki, T. J. Mag. Resn. A 109, 129–133 (1994).

    Article  CAS  Google Scholar 

  29. Wittekind, M. & Mueller, L. J. Mag. Resn. B 101, 201–205 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Munro and A. Möglich for critical reading of the manuscript; S. Crosson and T. Pan for sharing reagents and equipment and members of the Sosnick, Gardner and Rosen laboratories for helpful discussions. This work was supported by grants from the US National Institutes of Health (R01 GM081875 to K.H.G., GM55694 to T.R.S. and GM088668 to T.R.S. and M. Glotzer), the Robert A. Welch Foundation (I-1424 to K.H.G. and I-1544 to M.K.R.) and the Chicago Biomedical Consortium with support from The Searle Funds at The Chicago Community Trust (to T.R.S., M. Glotzer and E. Weiss).

Author information

Authors and Affiliations

Authors

Contributions

D.S. designed and performed experiments, analyzed data and wrote the paper; X.Y. designed and performed experiments, analyzed data and wrote the paper; G.G. performed experiments and analyzed data; M.K.R. designed experiments, analyzed data and wrote the paper; K.H.G. designed experiments, analyzed data and wrote the paper; T.R.S. designed experiments, analyzed data and wrote the paper.

Corresponding authors

Correspondence to Michael K Rosen, Kevin H Gardner or Tobin R Sosnick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1984 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strickland, D., Yao, X., Gawlak, G. et al. Rationally improving LOV domain–based photoswitches. Nat Methods 7, 623–626 (2010). https://doi.org/10.1038/nmeth.1473

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing