Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Simultaneous intracellular chloride and pH measurements using a GFP-based sensor

Abstract

Chloride and protons perform important closely related roles in many cellular responses. Here we developed a ratiometric biosensor, ClopHensor, based on a highly chloride-sensitive Aequorea victoria GFP variant that is suited for the combined real-time optical detection of pH changes and chloride fluxes in live cells. We detected high chloride concentration in large dense-core exocytosis granules by targeting ClopHensor to these intracellular compartments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ClopHensor design and functional characterization.
Figure 2: ClopHensor pH and [Cl]i calibration in live cells.
Figure 3: Measurement of chloride concentration in LDCVs.

Similar content being viewed by others

References

  1. Faundez, V. & Hartzell, H.C. Sci. STKE 2004, re8 (2004).

    PubMed  Google Scholar 

  2. Bregestovski, P., Waseem, T. & Mukhtarov, M. Front. Mol. Neurosci. 2, 15 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Planells-Cases, R. & Jentsch, T.J. Biochim Biophys Acta 1792, 173–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Illsley, N.P. & Verkman, A.S. Biochemistry 26, 1215–1219 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Jayaraman, S., Haggie, P., Wachter, R.M., Remington, S.J. & Verkman, A.S. J. Biol. Chem. 275, 6047–6050 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Kuner, T. & Augustine, G.J. Neuron 27, 447–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Galietta, L.J., Haggie, P.M. & Verkman, A.S. FEBS Lett. 499, 220–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Markova, O., Mukhtarov, M., Real, E., Jacob, Y. & Bregestovski, P. J. Neurosci. Methods 170, 67–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Wachter, R.M., Yarbrough, D., Kallio, K. & Remington, S.J. J. Mol. Biol. 301, 157–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Tsutsui, H., Karasawa, S., Okamura, Y. & Miyawaki, A. Nat. Methods 5, 683–685 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Jose, M., Nair, D.K., Reissner, C., Hartig, R. & Zuschratter, W. Biophys. J. 92, 2237–2254 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Arosio, D. et al. Biophys. J. 93, 232–244 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bizzarri, R. et al. Biophys. J. 90, 3300–3314 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, M.M. et al. Chem. Biol. 7, 197–209 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. El Meskini, R. et al. Endocrinology 142, 864–873 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  17. Valeur, B. Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2002).

  18. Zucker, R.M. & Price, O. Cytometry 44, 273–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Zucker, R.M. & Price, O.T. Cytometry 44, 295–308 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Wong, G., Sei, Y. & Skolnick, P. Mol. Pharmacol. 42, 996–1003 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Faraci for his assistance in preparing NPY-ClopHensor PC12 cell samples, S. Luin for his assistance with microscope analysis, S. Sulis-Sato and G. Lanza for their help with experimental setup, A. Cereseto for critical reading of the manuscript and G. Ratto for helpful discussions. The study was supported by Fondazione Monte dei Paschi di Siena (Monte dei Paschi Foundation) and by the Italian Ministry for University and Research (Fondo per gli Investimenti della Ricerca di Base RBLA03ER38).

Author information

Authors and Affiliations

Authors

Contributions

D.A. conceived the sensor, designed and performed experiments, analyzed data and wrote the paper; F.R. and L.M. generated ClopHensor constructs, and designed and performed experiments; R.G. performed sensor calibrations and kinetic analysis; L.A. performed experiments and analyzed data; F.B. interpreted the data, edited the paper and gave conceptual advice.

Corresponding author

Correspondence to Daniele Arosio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–2 and Supplementary Data (PDF 1559 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arosio, D., Ricci, F., Marchetti, L. et al. Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat Methods 7, 516–518 (2010). https://doi.org/10.1038/nmeth.1471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1471

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing