Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generating knockout rats by transposon mutagenesis in spermatogonial stem cells


Disrupting genes in the rat on a genome-wide scale will allow the investigation of many biological processes linked to human health. Here we used transposon-mediated mutagenesis to knock out genes in rat spermatogonial stem cells. Given the capacity of the testis to support spermatogenesis from thousands of transplanted, genetically manipulated spermatogonia, this approach paves a way for high-throughput functional genomic studies in the laboratory rat.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Production of knockout rats using polyclonal libraries of mutant spermatogonia.
Figure 2: Production of knockout rats using monoclonally enriched spermatogonial lines.


  1. Capecchi, M.R. Nat. Rev. Genet. 6, 507–512 (2005).

    Article  CAS  Google Scholar 

  2. Hamra, F.K. et al. Proc. Natl. Acad. Sci. USA 102, 17430–17435 (2005).

    Article  CAS  Google Scholar 

  3. Ryu, B.Y., Kubota, H., Avarbock, M.R. & Brinster, R.L. Proc. Natl. Acad. Sci. USA 102, 14302–14307 (2005).

    Article  CAS  Google Scholar 

  4. Buehr, M. et al. Cell 135, 1287–1298 (2008).

    Article  CAS  Google Scholar 

  5. Li, P. et al. Cell 135, 1299–1310 (2008).

    Article  CAS  Google Scholar 

  6. Orwig, K.E., Shinohara, T., Avarbock, M.R. & Brinster, R.L. Biol. Reprod. 66, 944–949 (2002).

    Article  CAS  Google Scholar 

  7. Hamra, F.K. et al. Proc. Natl. Acad. Sci. USA 99, 14931–14936 (2002).

    Article  CAS  Google Scholar 

  8. Ivics, Z. et al. Nat. Methods 6, 415–422 (2009).

    Article  CAS  Google Scholar 

  9. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvak, Z. Cell 91, 501–510 (1997).

    Article  CAS  Google Scholar 

  10. Kitada, K. et al. Nat. Methods 4, 131–133 (2007).

    Article  CAS  Google Scholar 

  11. Lu, B. et al. Mamm. Genome 18, 338–346 (2007).

    Article  CAS  Google Scholar 

  12. Horie, K. et al. Proc. Natl. Acad. Sci. USA 98, 9191–9196 (2001).

    Article  CAS  Google Scholar 

  13. Dupuy, A.J., Fritz, S. & Largaespada, D.A. Genesis 30, 82–88 (2001).

    Article  CAS  Google Scholar 

  14. Richardson, T.E., Chapman, K.M., Dann, C.T., Hammer, R.E. & Hamra, F.K. PLoS One 4, e6308 (2009).

    Article  Google Scholar 

  15. Mates, L., Izsvak, Z. & Ivics, Z. Genome Biol. 8 (Suppl. 1), S1 (2007).

    Article  Google Scholar 

  16. Wu, Z. et al. Biol. Reprod. 81, 77–86 (2009).

    Article  CAS  Google Scholar 

  17. Cronkhite, J.T. et al. Dev. Biol. 284, 171–183 (2005).

    Article  CAS  Google Scholar 

  18. Dann, C.T., Alvarado, A.L., Hammer, R.E. & Garbers, D.L. Proc. Natl. Acad. Sci. USA 103, 11246–11251 (2006).

    Article  CAS  Google Scholar 

  19. Hamra, F.K. et al. Dev. Biol. 269, 393–410 (2004).

    Article  CAS  Google Scholar 

  20. Vigdal, T.J., Kaufman, C.D., Izsvak, Z., Voytas, D.F. & Ivics, Z. J. Mol. Biol. 323, 441–452 (2002).

    Article  CAS  Google Scholar 

  21. Schnutgen, F. et al. Proc. Natl. Acad. Sci. USA 102, 7221–7226 (2005).

    Article  Google Scholar 

  22. Friedrich, G. & Soriano, P. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

  23. Izsvak, Z. et al. J. Biol. Chem. 277, 34581–34588 (2002).

    Article  CAS  Google Scholar 

  24. Sanes, J.R., Rubenstein, J.L. & Nicolas, J.F. EMBO J. 5, 3133–3142 (1986).

    Article  CAS  Google Scholar 

Download references


We thank T. Nguyen, T.E. Richardson, G. Mendrano and L.M. Thompson for help with these studies, N. Hübner, D.J. Mangelsdorf and M.H. Cobb for discussions and for critical reading of the manuscript, and EURATools–EURATrans consortium for sponsoring Z. Izsvák and F.K.H to attend annual meetings (grant HEALTH-F4-2010-241504). This work was supported by US National Institutes of Health grants R21RR023958 from the National Center for Research Resources and RO1HD036022 from the National Institute of Child Health and Human Development to F.K.H., by the Bundesministerium fur Bildung und Forschung (grant NGFN-2) to Z. Ivics, European Young Investigator award to Z. Izsvák and by the Cecil H. and Ida Green Center for Reproductive Biology Sciences at University of Texas Southwestern Medical Center in Dallas.

Author information

Authors and Affiliations



I.G., J.F., H.M.P., J.R.S., K.M.C. and F.K.H. performed the research; Z. Izsvák, Z. Ivics and F.K.H. designed research; all authors analyzed the data; Z. Izsvák, Z. Ivics and F.K.H. wrote the manuscript. Correspondence should be addressed to F.K.H. regarding spermatogonial technology or Z. Ivics regarding transposon technology.

Corresponding authors

Correspondence to Zoltán Ivics or F Kent Hamra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–5 and Supplementary Discussion (PDF 2237 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Izsvák, Z., Fröhlich, J., Grabundzija, I. et al. Generating knockout rats by transposon mutagenesis in spermatogonial stem cells. Nat Methods 7, 443–445 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing