Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays

Abstract

Extracellular stimuli are transduced inside the cell by posttranslational modifications (PTMs), such as phosphorylation, of proteins in signaling networks. Insight into the structure of these networks requires quantification of PTM levels in individual cells. Fluorescence resonance energy transfer (FRET) measured by fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to image PTM levels in situ. FLIM on cell arrays that express fluorescent protein fusions can quantify tyrosine phosphorylation patterns in large networks in individual cells. We identified tyrosine kinase substrates by imaging their phosphorylation levels after inhibition of protein tyrosine phosphatases. Analysis of the correlation between protein phosphorylation and expression levels at single cell resolution allowed us to identify positive feedback motifs. Using FLIM on cell arrays (CA-FLIM), we uncovered components that transduce signals from epidermal growth factor receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of CA-FLIM.
Figure 2: Global analysis of FLIM data accurately quantifies the phosphorylated fraction of proteins.
Figure 3: Identification of protein tyrosine kinase and phosphatase substrates.
Figure 4: Cell-to-cell variation in phosphorylation response reveals positive feedback motifs.
Figure 5: Cluster analysis of EGF-induced tyrosine phosphorylation response.

Similar content being viewed by others

References

  1. Santos, S.D., Verveer, P.J. & Bastiaens, P.I. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat. Cell Biol. 9, 324–330 (2007).

    Article  CAS  Google Scholar 

  2. Zamir, E. & Bastiaens, P.I. Reverse engineering intracellular biochemical networks. Nat. Chem. Biol. 4, 643–647 (2008).

    Article  CAS  Google Scholar 

  3. Stiffler, M.A. et al. PDZ domain binding selectivity is optimized across the mouse proteome. Science 317, 364–369 (2007).

    Article  CAS  Google Scholar 

  4. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  Google Scholar 

  5. Neumann, B. et al. High-throughput RNAi screening by time-lapse imaging of live human cells. Nat. Methods 3, 385–390 (2006).

    Article  CAS  Google Scholar 

  6. Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).

    Article  CAS  Google Scholar 

  7. Wagner, A. Robustness against mutations in genetic networks of yeast. Nat. Genet. 24, 355–361 (2000).

    Article  CAS  Google Scholar 

  8. Gadella, T.W.J., Jovin, T.M. & Clegg, R.M. Fluorescence lifetime imaging microscopy (FLIM)—spatial-resolution of microstructures on the nanosecond time-scale. Biophys. Chem. 48, 221–239 (1993).

    Article  CAS  Google Scholar 

  9. Bastiaens, P.I. & Squire, A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52 (1999).

    Article  CAS  Google Scholar 

  10. Verveer, P.J., Wouters, F.S., Reynolds, A.R. & Bastiaens, P.I.H. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000).

    Article  CAS  Google Scholar 

  11. Reynolds, A.R., Tischer, C., Verveer, P.J., Rocks, O. & Bastiaens, P.I. EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat. Cell Biol. 5, 447–453 (2003).

    Article  CAS  Google Scholar 

  12. Maeder, C.I. et al. Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat. Cell Biol. 9, 1319–1326 (2007).

    Article  CAS  Google Scholar 

  13. Ziauddin, J. & Sabatini, D.M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    Article  CAS  Google Scholar 

  14. Simpson, J.C., Wellenreuther, R., Poustka, A., Pepperkok, R. & Wiemann, S. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 1, 287–292 (2000).

    Article  CAS  Google Scholar 

  15. Verveer, P.J., Squire, A. & Bastiaens, P.I.H. Global analysis of fluorescence lifetime imaging microscopy data. Biophys. J. 78, 2127–2137 (2000).

    Article  CAS  Google Scholar 

  16. Grecco, H.E., Roda-Navarro, P. & Verveer, P.J. Global analysis of time correlated single photon counting FRET-FLIM data. Opt. Express 17, 6493–6508 (2009).

    Article  CAS  Google Scholar 

  17. Clayton, A.H., Hanley, Q.S. & Verveer, P.J. Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J. Microsc. 213, 1–5 (2004).

    Article  CAS  Google Scholar 

  18. Davis, T.L. et al. Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3). Structure 16, 873–884 (2008).

    Article  CAS  Google Scholar 

  19. Mikalsen, S.O. & Kaalhus, O. Properties of pervanadate and permolybdate. Connexin43, phosphatase inhibition, and thiol reactivity as model systems. J. Biol. Chem. 273, 10036–10045 (1998).

    Article  CAS  Google Scholar 

  20. Huyer, G. et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272, 843–851 (1997).

    Article  CAS  Google Scholar 

  21. Blom, N., Gammeltoft, S. & Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 (1999).

    Article  CAS  Google Scholar 

  22. Ting, A.Y., Kain, K.H., Klemke, R.L. & Tsien, R.Y. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl. Acad. Sci. USA 98, 15003–15008 (2001).

    Article  CAS  Google Scholar 

  23. Szymkiewicz, I. et al. CIN85 participates in Cbl-b–mediated down-regulation of receptor tyrosine kinases. J. Biol. Chem. 277, 39666–39672 (2002).

    Article  CAS  Google Scholar 

  24. Beaujolais, S.A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 101, 12130–12135 (2004).

    Article  Google Scholar 

  25. Glister, M.L., Yang, Y., Uren, J. & Schlessinger, J. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc. Natl. Acad. Sci. USA 103, 9796–9801 (2006).

    Article  Google Scholar 

  26. Li, W. et al. Srcasm modulates EGF and Src-kinase signaling in keratinocytes. J. Biol. Chem. 280, 6036–6046 (2005).

    Article  CAS  Google Scholar 

  27. Shibamoto, S. et al. Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes. Commun. 1, 295–305 (1994).

    Article  CAS  Google Scholar 

  28. Pennock, S. & Wang, Z. A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation. Mol. Cell. Biol. 28, 3020–3037 (2008).

    Article  CAS  Google Scholar 

  29. Tyson, J.J., Chen, K.C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article  CAS  Google Scholar 

  30. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D.A. & Nolan, G.P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    Article  CAS  Google Scholar 

  31. Erfle, H. et al. Reverse transfection on cell arrays for high content screening microscopy. Nat. Protocols 2, 392–399 (2007).

    Article  CAS  Google Scholar 

  32. van Munster, E.B. & Gadella, T.W.J. Suppression of photobleaching-induced artifacts in frequency-domain FLIM by permutation of the recording order. Cytometry A 58A, 185–194 (2004).

    Article  Google Scholar 

  33. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    Article  CAS  Google Scholar 

  34. Lew, E.D., Furdui, C.M., Anderson, K.S. & Schlessinger, J. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci. Signal. 2, ra6 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

P.R.-N. was supported by a Marie Curie Intra-European fellowship for career development (FP7-PEOPLE 2007-2-1-EIF). This work was supported by Interaction Proteome (Integrated Project from FP6) and the Centre for Systems Biology in Dortmund (cofinanced by the European Regional Development Fund and the State of North Rhine-Westfalia). S. Dhe-Paganon (University of Toronto) provided the pET28a-LIC-EPHA3c plasmid.

Author information

Authors and Affiliations

Authors

Contributions

P.I.H.B. devised the method. A.S. and R.P. contributed the initial implementation. H.E.G., P.R.-N. and A.G. designed, supervised, performed and analyzed the experiments. A.S., T.F., D.C.T. and J.H. contributed experiments. A.S. and H.E.G. built the instrument. H.E.G., P.R-N. and P.I.H.B. wrote the paper.

Corresponding author

Correspondence to Philippe I H Bastiaens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–2, Supplementary Protocols and Supplementary Discussion (PDF 3761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grecco, H., Roda-Navarro, P., Girod, A. et al. In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays. Nat Methods 7, 467–472 (2010). https://doi.org/10.1038/nmeth.1458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing