Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Using buoyant mass to measure the growth of single cells

Abstract

We used a suspended microchannel resonator (SMR) combined with picoliter-scale microfluidic control to measure buoyant mass and determine the 'instantaneous' growth rates of individual cells. The SMR measures mass with femtogram precision, allowing rapid determination of the growth rate in a fraction of a complete cell cycle. We found that for individual cells of Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae and mouse lymphoblasts, heavier cells grew faster than lighter cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Dynamic trapping of single cells.
Figure 2: Growth rate versus initial buoyant mass.
Figure 3: B. subtilis cell trapped for a period similar to the cell cycle duration.

References

  1. Kubitschek, H.E. J. Bacteriol. 168, 613–618 (1986).

    Article  CAS  Google Scholar 

  2. Cullum, J. & Vicente, M. J. Bacteriol. 134, 330–337 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Reshes, G., Vanounou, S., Fishov, I. & Feingold, M. Biophys. J. 94, 251–264 (2008).

    Article  CAS  Google Scholar 

  4. Schaechter, M., Williamson, J.P., Hood, J.R. Jr. & Kochal, J. Gen. Microbiol. 29, 421–434 (1962).

    Article  CAS  Google Scholar 

  5. Di Talia, S., Skotheim, J.M., Bean, J.M., Siggia, E.D. & Cross, F.R. Nature 448, 947–951 (2007).

    Article  CAS  Google Scholar 

  6. Elliott, S.G. & McLaughlin, C.S. Proc. Natl. Acad. Sci. USA 75, 4384–4388 (1978).

    Article  CAS  Google Scholar 

  7. Goranov, A.I. et al. Genes Dev. 23, 1408–1422 (2009).

    Article  CAS  Google Scholar 

  8. Conlon, I. & Raff, M. J. Biol. 2, 7 (2003).

    Article  Google Scholar 

  9. Tzur, A., Kafri, R., LeBleu, V.S., Lahav, G. & Kirschner, M.W. Science 325, 167–171 (2009).

    Article  CAS  Google Scholar 

  10. Efe, J.A., Botelho, R.J. & Emr, S.D. Curr. Opin. Cell Biol. 17, 402–408 (2005).

    Article  CAS  Google Scholar 

  11. Popescu, G. et al. Am. J. Physiol. Cell Physiol. 295, C538–C544 (2008).

    Article  CAS  Google Scholar 

  12. Burg, T.P. et al. Nature 446, 1066–1069 (2007).

    Article  CAS  Google Scholar 

  13. Chen, K.C. et al. Mol. Biol. Cell 15, 3841–3862 (2004).

    Article  CAS  Google Scholar 

  14. Raj, A. & van Oudenaarden, A. Cell 135, 216–226 (2008).

    Article  CAS  Google Scholar 

  15. Prescott, D.M. Exp. Cell Res. 9, 328–337 (1955).

    Article  CAS  Google Scholar 

  16. Reshes, G., Vanounou, S., Fishov, I. & Feingold, M. Phys. Biol. 5, 46001 (2008).

    Article  CAS  Google Scholar 

  17. Tyson, J.J. & Hannsgen, K.B. J. Math. Biol. 22, 61–68 (1985).

    Article  CAS  Google Scholar 

  18. Jorgensen, P. & Tyers, M. Curr. Biol. 14, R1014–R1027 (2004).

    Article  CAS  Google Scholar 

  19. Godin, M., Bryan, A.K., Burg, T.P., Babcock, K. & Manalis, S.R. Appl. Phys. Lett. 91, 123121 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by EUREKA (R01GM085457) and a Center for Cell Decision Process Grant (P50GM68762) from the US National Institute of Health and by an Institute for Collaborative Biotechnologies Grant (DAAD1903D0004) from the US Army Research Office. M.G. acknowledges support from the Natural Sciences and Engineering Research Council of Canada. F.F.D. acknowledges support from Fundação para a Ciência e a Tecnologia, Portugal, through a graduate fellowship (SFRH/BD/47736/2008). Devices were fabricated at the Massachusetts Institute of Technology's Microsystems Technology Laboratory and at Innovative Micro Technologies.

Author information

Authors and Affiliations

Authors

Contributions

M.G. developed the trapping method, F.F.D. developed the model, M.G. and F.F.D. conducted experiments on bacteria, W.H.G. and A.K.B. adapted the method and conducted experiments on yeast, and S.S. adapted the method and conducted experiments on mouse lymphoblasts. K.P. fabricated the devices used for experiments on mouse lymphoblasts. All authors contributed to designing of the experiments and writing of the manuscript.

Corresponding author

Correspondence to Scott R Manalis.

Ethics declarations

Competing interests

S.R.M. is a co-founder of Affinity Biosensors and declares competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–5 and Supplementary Note (PDF 1761 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Godin, M., Delgado, F., Son, S. et al. Using buoyant mass to measure the growth of single cells. Nat Methods 7, 387–390 (2010). https://doi.org/10.1038/nmeth.1452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing