Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A nonviral minicircle vector for deriving human iPS cells

Abstract

Owing to the risk of insertional mutagenesis, viral transduction has been increasingly replaced by nonviral methods to generate induced pluripotent stem cells (iPSCs). We report the use of 'minicircle' DNA, a vector type that is free of bacterial DNA and capable of high expression in cells, for this purpose. Here we use a single minicircle vector to generate transgene-free iPSCs from adult human adipose stem cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of iPSCs with minicircle vector.
Figure 2: Pluripotency of mc-iPSCs.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Science 322, 945–949 (2008).

    Article  CAS  Google Scholar 

  2. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Science 322, 949–953 (2008).

    Article  CAS  Google Scholar 

  3. Kaji, K. et al. Nature 458, 771–775 (2009).

    Article  CAS  Google Scholar 

  4. Soldner, F. et al. Cell 136, 964–977 (2009).

    Article  CAS  Google Scholar 

  5. Woltjen, K. et al. Nature 458, 766–770 (2009).

    Article  CAS  Google Scholar 

  6. Yu, J. et al. Science 324, 797–801 (2009).

    Article  CAS  Google Scholar 

  7. Munz, C. et al. J. Exp. Med. 191, 1649–1660 (2000).

    Article  CAS  Google Scholar 

  8. Zhou, H. et al. Cell Stem Cell 4, 381–384 (2009).

    Article  CAS  Google Scholar 

  9. Kim, D. et al. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  Google Scholar 

  10. Chen, Z.-Y., He, C.-Y., Ehrhardt, A. & Kay, M.A. Mol. Ther. 8, 495–500 (2003).

    Article  CAS  Google Scholar 

  11. Chen, Z.-Y., He, C.-Y. & Kay, M. Hum. Gene Ther. 16, 126–131 (2005).

    Article  CAS  Google Scholar 

  12. Ryan, M.D. & Drew, J. EMBO J. 13, 928–933 (1994).

    Article  CAS  Google Scholar 

  13. Sun, N. et al. Proc. Natl. Acad. Sci. USA 106, 15720–15725 (2009).

    Article  CAS  Google Scholar 

  14. Okita, K., Ichisaka, T. & Yamanaka, S. Nature 448, 313–317 (2007).

    Article  CAS  Google Scholar 

  15. Wernig, M. et al. Nature 448, 318–324 (2007).

    Article  CAS  Google Scholar 

  16. Bunnell, B.A., Flaat, M., Gagliardi, C., Patel, B. & Ripoll, C. Methods 45, 115–120 (2008).

    Article  CAS  Google Scholar 

  17. Zuk, P.A. et al. Mol. Biol. Cell 13, 4279–4295 (2002).

    Article  CAS  Google Scholar 

  18. Guilak, F. et al. J. Cell. Physiol. 206, 229–237 (2006).

    Article  CAS  Google Scholar 

  19. Huangfu, D. et al. Nat. Biotechnol. 26, 1269–1275 (2008).

    Article  CAS  Google Scholar 

  20. Swijnenburg, R.J. et al. Proc. Natl. Acad. Sci. USA 105, 12991–12996 (2009).

    Article  Google Scholar 

  21. Osafune, K. et al. Nat. Biotechnol. 26, 313–315 (2008).

    Article  CAS  Google Scholar 

  22. Li, Z. et al. Stem Cells 26, 864–873 (2008).

    Article  CAS  Google Scholar 

  23. Cao, F. et al. PLoS One 3, e3474 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A.J. Connolly for assistance with histological analysis, members of the Stanford Functional Genomics Facility and Stanford University PAN Core Facility for assistance with microarrays and A. Cherry for assistance with cytogenetics. We thank funding support from Mallinckrodt Foundation, US National Institutes of Health (NIH) DP2OD004437, HL091453-01A1S109, Burroughs Wellcome Foundation and American Heart Association 0970394N (J.C.W.); NIH R90 DK 07010301, California Institute of Regenerative Medicine T1-00001 and RL1-00662-1, NIH R21 DE018727, RC1HL100490, NIH R21 DE019274, the Oak Foundation and the Hagey Laboratory for Pediatric Regenerative Medicine (M.T.L.); U01HL099776 (R.C.R.).

Author information

Authors and Affiliations

Authors

Contributions

F.J., K.D.W., N.S., R.C.R., M.A.K., M.T.L. and J.C.W. conceived and designed the experiments. F.J., K.D.W., N.S., D.M.G., M.H., Z.Y.C., Z.L. and N.J.P. performed the experiments. F.J., K.D.W. and J.C.W. wrote the paper.

Corresponding authors

Correspondence to Mark A Kay, Michael T Longaker or Joseph C Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–4 (PDF 615 kb)

Supplementary Video 1

Day 20 beating cardiomyocyte progenitors derived from mc-iPSCs. We initially observed beating clusters on day 16 after EB formation. Two clusters of cells can be seen beating spontaneously in this video (lower right corner and middle top). (MOV 2062 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, F., Wilson, K., Sun, N. et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7, 197–199 (2010). https://doi.org/10.1038/nmeth.1426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing