Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silencing neurotransmission with membrane-tethered toxins

Abstract

At synaptic terminals, high voltage–activated Cav2.1 and Cav2.2 calcium channels have an essential and joint role in coupling the presynaptic action potential to neurotransmitter release. Here we show that membrane-tethered toxins allowed cell-autonomous blockade of each channel individually or simultaneously in mouse neurons in vivo. We report optimized constitutive, inducible and Cre recombinase–dependent lentiviral vectors encoding fluorescent recombinant toxins, and we also validated the toxin-based strategy in a transgenic mouse model. Toxins delivered by lentiviral vectors selectively inhibited the dopaminergic nigrostriatal pathway, and transgenic mice with targeted expression in nociceptive peripheral neurons displayed long-lasting suppression of chronic pain. Optimized tethered toxins are tools for cell-specific and temporal manipulation of ion channel-mediated activities in vivo, including blockade of neurotransmitter release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of t-toxins in neurons.
Figure 2: Electrophysiological analysis of t-toxin activity.
Figure 3: Inducible and Cre-dependent t-toxins.
Figure 4: In vivo inhibition of dopaminergic neurotransmission by t-toxins.
Figure 5: Inhibition of Cav2.2 in nociceptors of t-toxin transgenic mice.
Figure 6: Reduction of pain in transgenic mice.

Similar content being viewed by others

References

  1. Tsien, R.W., Lipscombe, D., Madison, D.V., Bley, K.R. & Fox, A.P. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11, 431–438 (1988).

    Article  CAS  Google Scholar 

  2. Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).

    Article  CAS  Google Scholar 

  3. Catterall, W.A. & Few, A.P. Calcium channel regulation and presynaptic plasticity. Neuron 59, 882–901 (2008).

    Article  CAS  Google Scholar 

  4. Terlau, H. & Olivera, B.M. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev. 84, 41–68 (2004).

    Article  CAS  Google Scholar 

  5. Lewis, R.J. & Garcia, M.L. Therapeutic potential of venom peptides. Natl. Rev. 2, 790–802 (2003).

    CAS  Google Scholar 

  6. Olivera, B.M. et al. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry 26, 2086–2090 (1987).

    Article  CAS  Google Scholar 

  7. Hillyard, D.R. et al. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron 9, 69–77 (1992).

    Article  CAS  Google Scholar 

  8. Ibañez-Tallon, I. et al. Tethering naturally occurring peptide toxins for cell-autonomous modulation of ion channels and receptors in vivo . Neuron 43, 305–311 (2004).

    Article  Google Scholar 

  9. Wu, Y., Cao, G., Pavlicek, B., Luo, X. & Nitabach, M.N. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin. PLoS Biol. 6, e273 (2008).

    Article  Google Scholar 

  10. Holford, M., Auer, S., Laqua, M. & Ibañez-Tallon, I. Manipulating neuronal circuits with endogenous and recombinant cell-surface tethered modulators. Front. Mol. Neurosci. 2, 21 (2009).

    Article  Google Scholar 

  11. Dudanova, I. et al. Important contribution of {alpha}-neurexins to Ca2+-triggered exocytosis of secretory granules. J. Neurosci. 26, 10599–10613 (2006).

    Article  CAS  Google Scholar 

  12. Cao, Y.-Q. Presynaptic Ca2+ channels compete for channel type-preferring slots in altered neurotransmission arising from Ca2+ channelopathy. Neuron 43, 387–400 (2004).

    Article  CAS  Google Scholar 

  13. Cao, Y.Q. & Tsien, R.W. Effects of familial hemiplegic migraine type 1 mutations on neuronal P/Q-type Ca2+ channel activity and inhibitory synaptic transmission. Proc. Natl. Acad. Sci. USA 102, 2590–2595 (2005).

    Article  CAS  Google Scholar 

  14. Poncer, J.C., McKinney, R.A., Gahwiler, B.H. & Thompson, S.M. Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 18, 463–472 (1997).

    Article  CAS  Google Scholar 

  15. Szulc, J., Wiznerowicz, M., Sauvain, M.-O., Trono, D. & Aebischer, P. A versatile tool for conditional gene expression and knockdown. Nat. Methods 3, 109–116 (2006).

    Article  CAS  Google Scholar 

  16. Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: A tool for efficient genetic engineering of mammalian genomes. Proc. Natl. Acad. Sci. USA 99, 4489–4494 (2002).

    Article  CAS  Google Scholar 

  17. Pfeifer, A., Brandon, E.P., Kootstra, N., Gage, F.H. & Verma, I.M. Delivery of the Cre recombinase by a self-deleting lentiviral vector: Efficient gene targeting in vivo. Proc. Natl. Acad. Sci. USA 98, 11450–11455 (2001).

    Article  CAS  Google Scholar 

  18. Ahn, K., Mishina, Y., Hanks, M.C., Behringer, R.R. & Crenshaw, E.B. III. BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development 128, 4449–4461 (2001).

    CAS  PubMed  Google Scholar 

  19. Ungerstedt, U. & Arbuthnott, G.W. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 485–493 (1970).

    Article  CAS  Google Scholar 

  20. Zamponi, G.W., Lewis, R.J., Todorovic, S.M., Arneric, S.P. & Snutch, T.P. Role of voltage-gated calcium channels in ascending pain pathways. Brain Res. Rev. 60, 84–89 (2009).

    Article  CAS  Google Scholar 

  21. Scroggs, R.S. & Fox, A.P. Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J. Physiol. (Lond.) 445, 639–658 (1992).

    Article  CAS  Google Scholar 

  22. Benn, S.C., Costigan, M., Tate, S., Fitzgerald, M. & Woolf, C.J. Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons. J. Neurosci. 21, 6077–6085 (2001).

    Article  CAS  Google Scholar 

  23. Snider, W.D. & McMahon, S.B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    Article  CAS  Google Scholar 

  24. Malmberg, A.B., Chen, C., Tonegawa, S. & Basbaum, A.I. Preserved acute pain and reduced neuropathic pain in mice lacking PKCgamma. Science 278, 279–283 (1997).

    Article  CAS  Google Scholar 

  25. Saegusa, H. et al. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J. 20, 2349–2356 (2001).

    Article  CAS  Google Scholar 

  26. Todorov, B. et al. Conditional inactivation of the Cacna1a gene in transgenic mice. Genesis 44, 589–594 (2006).

    Article  CAS  Google Scholar 

  27. Inchauspe, C.G., Martini, F.J., Forsythe, I.D. & Uchitel, O.D. Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of held presynaptic terminal. J. Neurosci. 24, 10379–10383 (2004).

    Article  CAS  Google Scholar 

  28. Jeng, C.J., Sun, M.C., Chen, Y.W. & Tang, C.Y. Dominant-negative effects of episodic ataxia type 2 mutations involve disruption of membrane trafficking of human P/Q-type Ca2+ channels. J. Cell. Physiol. 214, 422–433 (2008).

    Article  CAS  Google Scholar 

  29. Kerschensteiner, D., Morgan, J.L., Parker, E.D., Lewis, R.M. & Wong, R.O. Neurotransmission selectively regulates synapse formation in parallel circuits in vivo . Nature 460, 1016–1020 (2009).

    Article  CAS  Google Scholar 

  30. Airan, R.D. et al. Integration of light-controlled neuronal firing and fast circuit imaging. Curr. Opin. Neurobiol. 17, 587–592 (2007).

    Article  CAS  Google Scholar 

  31. Miljanich, G.P. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11, 3029–3040 (2004).

    Article  CAS  Google Scholar 

  32. Hu, J. & Lewin, G.R. Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J. Physiol. (Lond.) 577, 815–828 (2006).

    Article  CAS  Google Scholar 

  33. Gong, S., Yang, X.W., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res. 12, 1992–1998 (2002).

    Article  CAS  Google Scholar 

  34. Hargreaves, K., Dubner, R., Brown, F., Flores, C. & Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32, 77–88 (1988).

    Article  CAS  Google Scholar 

  35. Bennett, G.J. & Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107 (1988).

    Article  CAS  Google Scholar 

  36. Muller, T. et al. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev. 19, 733–743 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Osten (Cold Spring Harbor Laboratory) for providing the original lentiviral plasmid; R.Y. Tsien (University of California, San Diego) for providing mCherry cDNA; P. Aebischer (École Polytechnique Fédéral de Lausanne) for providing pLVUT-tTR-KRAB plasmid; I.M. Verma (Salk Institute) for providing LV-Cre-SD plasmid; J. Duyster (Technical University Munich) for floxed DsRed cDNA; M. Missler (Westfälische Wilhelms-Universität Münster) for providing HEK293-Cav2.2 cells; J. Meyer for support with the hippocampus culture protocol, and F. Rathjen, G.R. Lewin, C. Birchmeier, T. Kuner, C. Scharff and G. Dittmar for helpful discussions. This work was supported by Helmholtz Association (31-002), Sonderforschungsbereich (SFB 665) and by Deutsche Forschungsgemeinschaft (DFG RA 424/5-1).

Author information

Authors and Affiliations

Authors

Contributions

S.A. and A.S.S. performed and analyzed most of the experiments. R.J. and J.S.-T. performed electrophysiology and analyzed data. C.H. and S.F. assisted with experiments. B.L. helped design tethers and established lentivirus protocol. I.I.-T. conceived and supervised the project and wrote the paper with S.A.

Corresponding author

Correspondence to Inés Ibañez-Tallon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–3 (PDF 865 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auer, S., Stürzebecher, A., Jüttner, R. et al. Silencing neurotransmission with membrane-tethered toxins. Nat Methods 7, 229–236 (2010). https://doi.org/10.1038/nmeth.1425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1425

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing