Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Parallel, tag-directed assembly of locally derived short sequence reads

Abstract

We demonstrate subassembly, an in vitro library construction method that extends the utility of short-read sequencing platforms to applications requiring long, accurate reads. A long DNA fragment library is converted to a population of nested sublibraries, and a tag sequence directs grouping of short reads derived from the same long fragment, enabling localized assembly of long fragment sequences. Subassembly may facilitate accurate de novo genome assembly and metagenome sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of subassembly process.
Figure 2: Evaluation of subassembly performance.

Similar content being viewed by others

References

  1. Shendure, J. & Ji, H. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  Google Scholar 

  2. Hillier, L.W. et al. Nat. Methods 5, 183–188 (2008).

    Article  CAS  Google Scholar 

  3. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Nat. Methods 5, 621–628 (2008).

    Article  CAS  Google Scholar 

  4. Hamady, M. & Knight, R. Genome Res. 19, 1141–1152 (2009).

    Article  CAS  Google Scholar 

  5. Simpson, J.T. et al. Genome Res. 19, 1117–1123 (2009).

    Article  CAS  Google Scholar 

  6. Weinstein, J.A., Jiang, N., White, R.A. 3rd, Fisher, D.S. & Quake, S.R. Science 324, 807–810 (2009).

    Article  CAS  Google Scholar 

  7. Bentley, G. et al. Tissue Antigens 74, 393–403 (2009).

    Article  CAS  Google Scholar 

  8. Margulies, M. et al. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  9. Kalyuzhnaya, M.G. et al. Nat. Biotechnol. 26, 1029–1034 (2008).

    Article  CAS  Google Scholar 

  10. Ewing, B. & Green, P. Genome Res. 8, 186–194 (1998).

    Article  CAS  Google Scholar 

  11. Stover, C.K. et al. Nature 406, 959–964 (2000).

    Article  CAS  Google Scholar 

  12. Altschul, S.F. et al. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  13. Myers, E.W. et al. Science 287, 2196–2204 (2000).

    Article  CAS  Google Scholar 

  14. Reinhardt, J.A. et al. Genome Res. 19, 294–305 (2009).

    Article  CAS  Google Scholar 

  15. Zerbino, D.R. & Birney, E. Genome Res. 18, 821–829 (2008).

    Article  CAS  Google Scholar 

  16. Brady, A. & Salzberg, S.L. Nat. Methods 6, 673–676 (2009).

    Article  CAS  Google Scholar 

  17. Delcher, A.L., Harmon, D., Kasif, S., White, O. & Salzberg, S.L. Nucleic Acids Res. 27, 4636–4641 (1999).

    Article  CAS  Google Scholar 

  18. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Chistoserdova and M.G. Kalyuzhnaya (University of Washington) for the gift of the methylamine-enriched metagenomic DNA sample, C. Manoil (University of Washington) for the gift of P. aeruginosa strain PAO1 genomic DNA and P. Green for helpful discussions. J.B.H. is supported by US National Institutes of Health grant T32GM007266 and an Achievement Rewards for College Scientists fellowship.

Author information

Authors and Affiliations

Authors

Contributions

E.H.T. and J.S. conceived the initial approach. All authors contributed to subsequent experimental design. J.B.H. and E.H.T. developed library construction methods. C.L. performed Illumina sequencing. R.P.P. developed the subassembly computational pipeline and iterative scaffolding algorithm. J.B.H., R.P.P. and J.S. analyzed data. All authors contributed to writing of the manuscript. J.S. supervised all aspects of the study.

Corresponding authors

Correspondence to Joseph B Hiatt or Jay Shendure.

Ethics declarations

Competing interests

J.S., J.B.H., R.P.P. and E.H.T. are authors of a patent application for the method described in this paper (US Provisional Application number 61/096,720).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–4, Supplementary Notes 1–4 and Supplementary Protocols 1–3 (PDF 837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiatt, J., Patwardhan, R., Turner, E. et al. Parallel, tag-directed assembly of locally derived short sequence reads. Nat Methods 7, 119–122 (2010). https://doi.org/10.1038/nmeth.1416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing