Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals

Abstract

Neurotransmission operates on a millisecond timescale but is changed by normal experience or neuropathology over days to months. Despite the importance of long-term neurotransmitter dynamics, no technique exists to track these changes in a subject from day to day over extended periods of time. Here we describe and characterize a microsensor that can detect the neurotransmitter dopamine with subsecond temporal resolution over months in vivo in rats and mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic carbon-fiber microsensor.
Figure 2: In vivo fidelity of chronic carbon-fiber microsensors.
Figure 3: Long-term fidelity of chronic microsensors in vivo.

Similar content being viewed by others

References

  1. Schultz, W., Dayan, P. & Montague, P.R. Science 275, 1593–1599 (1997).

    Article  CAS  Google Scholar 

  2. Wise, R.A. Neuron 36, 229–240 (2004).

    Article  Google Scholar 

  3. Hornykiewicz, O. & Kish, S.J. Adv. Neurol. 45, 19–34 (1987).

    CAS  PubMed  Google Scholar 

  4. Nestler, E.J. & Carlezon, W.A. Biol. Psychiatry 59, 1151–1159 (2006).

    Article  CAS  Google Scholar 

  5. Montague, P.R. et al. J. Neurosci. 24, 1754–1759 (2004).

    Article  CAS  Google Scholar 

  6. Phillips, P.E.M., Stuber, G.D., Heien, M.L., Wightman, R.M. & Carelli, R.M. Nature 422, 614–618 (2003).

    Article  CAS  Google Scholar 

  7. Roitman, M.F., Stuber, G.D., Phillips, P.E.M., Wightman, R.M. & Carelli, R.M. J. Neurosci. 24, 1265–1271 (2004).

    Article  CAS  Google Scholar 

  8. Day, J.J., Roitman, M.F., Wightman, R.M. & Carelli, R.M. Nat. Neurosci. 10, 1020–1028 (2007).

    Article  CAS  Google Scholar 

  9. Phillips, P.E.M., Robinson, D.L., Stuber, G.D., Carelli, R.M. & Wightman, R.M. in Drugs of Abuse: Neurological Reviews and Protocols (ed., Wang, J.Q.) 443–464 (Humana Press, Totowa, New Jersey, USA, 2003).

  10. Owesson-White, C.A., Cheer, J.F., Beyene, M., Carelli, R.M. & Wightman, R.M Proc. Natl. Acad. Sci. USA 105, 11957–11962 (2008).

    Article  CAS  Google Scholar 

  11. Kruk, Z.L. et al. J. Neurosci. Methods 79, 9–19 (1998).

    Article  CAS  Google Scholar 

  12. Duff, A. & O'Neill, R.D. J. Neurochem. 62, 1496–1502 (1994).

    Article  CAS  Google Scholar 

  13. Wilson, G.S. & Johnson, M.A. Chem. Rev. 108, 2462–2481 (2008).

    Article  CAS  Google Scholar 

  14. Szarowski, D.H. et al. Brain Res. 983, 23–35 (2003).

    Article  CAS  Google Scholar 

  15. Seymour, J.P. & Kipke, D.R. Biomaterials 28, 3594–3607 (2007).

    Article  CAS  Google Scholar 

  16. Wightman, R.M. et al. Eur. J. Neurosci. 26, 2046–2054 (2007).

    Article  Google Scholar 

  17. Venton, B.J., Troyer, K.P. & Wightman, R.M. Anal. Chem. 74, 539–546 (2002).

    Article  CAS  Google Scholar 

  18. Martin, S.J., Grimwood, P.D. & Morris, R.G. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  Google Scholar 

  19. Tolias, A.S. et al. J. Neurophysiol. 98, 3780–3790 (2007).

    Article  Google Scholar 

  20. Swiergiel, A.H., Palamarchouk, V.S. & Dunn, A.J. J. Neurosci. Methods 73, 29–33 (1997).

    Article  CAS  Google Scholar 

  21. Gerhardt, G.A. et al. J. Neurosci. Methods 87, 67–76 (1999).

    Article  CAS  Google Scholar 

  22. Moussy, F. & Harrison, D.J. Anal. Chem. 66, 674–679 (1994).

    Article  CAS  Google Scholar 

  23. Heien, M.L. et al. Proc. Natl. Acad. Sci. USA 102, 10023–10028 (2005).

    Article  CAS  Google Scholar 

  24. Cheer, J.F., Wassum, K.M., Heien, M.L.A.V., Phillips, P.E.M. & Wightman, R.M. J. Neurosci. 24, 4393–4400 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Barnes for technical assistance and M. Walton and W. Shain for useful discussions. This work was supported by the University of Washington Royalties Research Fund and the US National Institutes of Health (R01-MH079292 to P.E.M.P.; R21-DA024140 to P.E.M.P.; and R01-DA014486 to N.S.). J.J.C. was supported by F32-DA024540, M.J.W. was supported by T32-AA007455 (to M. Larimer), J.O.G. was supported by T32-GM007270 (to D. Kimelman), and A.S.H., J.G.P. and E.A.H. were supported by T32-DA007278 (to C. Chavkin).

Author information

Authors and Affiliations

Authors

Contributions

P.E.M.P. conceived the work; S.B.E. optimized the microsensor design; J.J.C., S.G.S., N.S. and P.E.M.P. designed experiments and prepared the manuscript; J.J.C., S.G.S., M.J.W., J.O.G., E.A.H., A.S.H., J.G.P., C.A.A., I.W. and V.M. collected and analyzed data.

Corresponding author

Correspondence to Paul E M Phillips.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–2 and Supplementary Note (PDF 1147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, J., Sandberg, S., Wanat, M. et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat Methods 7, 126–129 (2010). https://doi.org/10.1038/nmeth.1412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing