Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Proteomics strategy for quantitative protein interaction profiling in cell extracts

Abstract

We report a proteomics strategy to both identify and quantify cellular target protein interactions with externally introduced ligands. We determined dissociation constants for target proteins interacting with the ligand of interest by combining quantitative mass spectrometry with a defined set of affinity purification experiments. We demonstrate the general utility of this methodology in interaction studies involving small-molecule kinase inhibitors, a tyrosine-phosphorylated peptide and an antibody as affinity ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assessment of target-specific dissociation constants by quantitative chemical proteomics.
Figure 2: Cellular kinase panel for quantitative inhibitor profiling.
Figure 3: Quantitative peptide profiling and immunoprecipitation analysis.

Similar content being viewed by others

References

  1. Kruse, U., Bantscheff, M., Drewes, G. & Hopf, C. Mol. Cell. Proteomics 7, 1887–1901 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Knight, Z.A. & Shokat, K.M. Chem. Biol. 12, 621–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J., Yang, P.L. & Gray, N.S. Nat. Rev. Cancer 9, 28–39 (2009).

    Article  PubMed  Google Scholar 

  4. Daub, H. Biochim. Biophys. Acta 1754, 183–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Brehmer, D. et al. Cancer Res. 65, 379–382 (2005).

    CAS  PubMed  Google Scholar 

  6. Bantscheff, M. et al. Nat. Biotechnol. 25, 1035–1044 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Ong, S.E. et al. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Olsen, J.V. et al. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Ono, M. & Kuwano, M. Clin. Cancer Res. 12, 7242–7251 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y.X. et al. Cancer Res. 68, 1905–1915 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Ong, S.E. et al. Proc. Natl. Acad. Sci. USA 106, 4617–4622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cox, J. & Mann, M. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Cheng, Y. & Prusoff, W.H. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

  14. Hinsby, A.M., Olsen, J.V. & Mann, M. J. Biol. Chem. 279, 46438–46447 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Daub, H. et al. Mol. Cell 31, 438–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wissing, J. et al. Mol. Cell. Proteomics 6, 537–547 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Schulze, W.X., Deng, L. & Mann, M. Mol. Syst. Biol. 1, 2005.0008 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blencke, S., Ullrich, A. & Daub, H. J. Biol. Chem. 278, 15435–15440 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Rappsilber, J., Mann, M. & Ishihama, Y. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Schroeder, M.J., Shabanowitz, J., Schwartz, J.C., Hunt, D.F. & Coon, J.J. Anal. Chem. 76, 3590–3598 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Olsen, J.V. et al. Mol. Cell. Proteomics 4, 2010–2021 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Maere, S., Heymans, K. & Kuiper, M. Bioinformatics 21, 3448–3449 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Shannon, P. et al. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adachi, J., Kumar, C., Zhang, Y., Olsen, J.V. & Mann, M. Genome Biol. 7, R80 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Godl, K. et al. Proc. Natl. Acad. Sci. USA 100, 15434–15439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hibi, M., Lin, A., Smeal, T., Minden, A. & Karin, M. Genes Dev. 7, 2135–2148 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Ullrich for his support of the present study with his doctorate student M.B. and funding from the Department of Molecular Biology, Max Planck Institute of Biochemistry, Martinsried and M. Mann for support. K.S. was supported by research fellowships from the Max Planck Society and the Alexander von Humboldt Foundation. This work was supported by a grant from the Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Contributions

K.S., C.W. and M.B. contributed to the experimental design, performed experiments and analyzed data. Z.G. and G.K. prepared small-molecule inhibitors. J.C. provided tools for data analysis and contributed to data analysis. J.V.O. provided mass spectrometry expertise and contributed to the experimental design and data analysis. H.D. designed the study, performed data analysis and wrote the paper.

Corresponding author

Correspondence to Henrik Daub.

Ethics declarations

Competing interests

A patent application of the proteomics approach described in this study has been filed and has been licensed to Kinaxo Biotechnologies GmbH, Martinsried, Germany. H.D. is a shareholder of Kinaxo Biotechnologies GmbH, and H.D., J.V.O. and J.C. have consultancy agreements with Kinaxo Biotechnologies GmbH. Z.G. and G.K. are shareholders and employees of Vichem Chemie Ltd. Budapest, Hungary.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–7, Supplementary Note and Supplementary Discussion (PDF 594 kb)

Supplementary Data 1

Protein groups data of AX14596 and gefitinib experiments (XLS 2676 kb)

Supplementary Data 2

Peptide evidences data of AX14596 and gefitinib experiments (XLS 25918 kb)

Supplementary Data 3

Quantification results and Kd and IC50 values for specific cellular targets of AX14596 and gefitinib (XLS 55 kb)

Supplementary Data 4

Protein groups data of VI16742 and SB203580 experiments (XLS 2346 kb)

Supplementary Data 5

Peptide evidences data of VI16742 and SB203580 experiments (XLS 22794 kb)

Supplementary Data 6

Quantification results and Kd and IC50 values for specific cellular targets of VI16742 and SB203580 (XLS 234 kb)

Supplementary Data 7

Protein groups data of IRS4-pY921 peptide interaction experiments (XLS 3379 kb)

Supplementary Data 8

Peptide evidences data of IRS4-pY921 peptide interaction experiments (XLS 16562 kb)

Supplementary Data 9

Quantification results and Kd values for specific cellular interactors of IRS4-pY921 peptide (XLS 282 kb)

Supplementary Data 10

Protein groups data of EGFR immunoprecipitation experiments (XLS 1214 kb)

Supplementary Data 11

Peptide evidences data of EGFR immunoprecipitation experiments (XLS 4082 kb)

Supplementary Data 12

Quantification results for specific cellular interactors of the EGFR (XLS 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, K., Weber, C., Bairlein, M. et al. Proteomics strategy for quantitative protein interaction profiling in cell extracts. Nat Methods 6, 741–744 (2009). https://doi.org/10.1038/nmeth.1373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing