Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-scale sorting of C. elegans embryos reveals the dynamics of small RNA expression


Caenorhabditis elegans is one of the most prominent model systems for embryogenesis, but collecting many precisely staged embryos has been impractical. Thus, early C. elegans embryogenesis has not been amenable to most high-throughput genomics or biochemistry assays. To overcome this problem, we devised a method to collect staged C. elegans embryos by fluorescence-activated cell sorting (eFACS). In a proof-of-principle experiment, we found that a single eFACS run routinely yielded tens of thousands of almost perfectly staged 1-cell stage embryos. As the earliest embryonic events are driven by posttranscriptional regulation, we combined eFACS with second-generation sequencing to profile the embryonic expression of small, noncoding RNAs. We discovered complex and orchestrated changes in the expression between and within almost all classes of small RNAs, including microRNAs and 26G-RNAs, during embryogenesis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: eFACS yielded tens of thousands of staged 1-cell stage embryos with at least 98% purity.
Figure 2: Dissecting small RNA expression during embryogenesis.
Figure 3: Flow cytometry–based sorting of fixed 1-cell stage embryos revealed miRNA expression dynamics.
Figure 4: Composition of different classes of small RNAs at different developmental stages obtained by deep sequencing.
Figure 5: Small RNA length distribution at different developmental stages.
Figure 6: The 26G-RNAs were expressed from intergenic clusters.

Accession codes


Gene Expression Omnibus


  1. Sulston, J.E., Schierenberg, E., White, J.G. & Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Piano, F. et al. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol. 10, 1619–1622 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Piano, F. et al. Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr. Biol. 12, 1959–1964 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Gonczy, P. & Rose, L.S. Asymmetric cell division and axis formation in the embryo. WormBook 2005, 1–20 (2005).

    Article  Google Scholar 

  6. Sonnichsen, B. et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462–469 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Fernandez, A.G. et al. New genes with roles in the C. elegans embryo revealed using RNAi of ovary-enriched ORFeome clones. Genome Res. 15, 250–259 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oegema, K. & Hyman, A.A. Cell division. WormBook 2006, 1–40 (2006).

    Google Scholar 

  9. Stroeher, V.L. et al. DNA-protein interactions in the Caenorhabditis elegans embryo: oocyte and embryonic factors that bind to the promoter of the gut-specific ges-1 gene. Dev. Biol. 163, 367–380 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Schauer, I.E. & Wood, W.B. Early C. elegans embryos are transcriptionally active. Development 110, 1303–1317 (1990).

    CAS  PubMed  Google Scholar 

  11. Edgar, L.G., Wolf, N. & Wood, W.B. Early transcription in Caenorhabditis elegans embryos. Development 120, 443–451 (1994).

    CAS  PubMed  Google Scholar 

  12. Seydoux, G. & Dunn, M.A. Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124, 2191–2201 (1997).

    CAS  PubMed  Google Scholar 

  13. Denli, A.M. et al. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Knight, S.W. & Bass, B.L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ambros, V. et al. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13, 807–818 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Baugh, L.R. et al. Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development 130, 889–900 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Evans, T.C. & Hunter, C.P. Translational control of maternal RNAs. WormBook 2005, 1–11 (2005).

    Google Scholar 

  19. Ruby, J.G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Lin, R. A gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality. Dev. Biol. 258, 226–239 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Friedlander, M.R. et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat. Biotechnol. 26, 407–415 (2008).

    Article  PubMed  Google Scholar 

  23. Batista, P.J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67–78 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nance, J., Munro, E.M. & Priess, J.R. C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation. Development 130, 5339–5350 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Miska, E.A. et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 3, e215 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sutovsky, P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc. Res. Tech. 61, 88–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Aravin, A.A. et al. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Stiernagle, T. Maintenance of C. elegans. WormBook 2006, 1–11 (2006).

    Google Scholar 

  31. Hoffman, R.A. & Wood, J.C.S. Characterization of flow cytometer instrument sensitivity. Curr. Protoc. Cytometry 1.20, 1.20.21–21.20.18 (2007).

    Google Scholar 

  32. Griffiths-Jones, S., Saini, H.K., van Dongen, S. & Enright, A.J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Jurka, J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418–420 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karolchik, D. et al. The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res. 36, D773–D779 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references


We thank R. Lin (University of Texas) for providing us with the TX189(P(oma-1)oma-1GFP) strain. All other strains used in this project were provided by the Caenorhabditis Genetic Center, which is funded by the US National Center for Research Resources. M.S. acknowledges part-time funding from the Berlin Institute for Medical Systems Biology, funded by Bundesministerium für Bildung und Forschung, and New York University PhD exchange program, and a travel grand from Boehringer Ingelheim Fonds. J.M. thanks the Deutsche forschungsgemeinschaft for a fellowship in the International Research Training Group Genomics and Systems Biology of Molecular Networks (GRK 1360). F.P. and N.R. acknowledge partial funding from US National Human Genome Research Institute (ModEncode U01 HG004276) and US National Institutes of Health (R01HD046236). We thank S. Lebedeva for help with sequencing runs.

Author information

Authors and Affiliations



F.P. and N.R. conceived, designed and supervised the study. M.S. designed and performed the experiments. J.M. designed and performed computational studies with the exception of predicting new miRNAs, which was done by M.R.F.; T.C. contributed to initial eFACS experiments; H.-P.R. helped with flow cytometer settings and runs; W.C. and N.L. contributed to library preparations and sequencing; M.S., J.M., F.P. and N.R. analyzed the data. M.S. and N.R. wrote the paper, and J.M. and F.P. edited it.

Corresponding authors

Correspondence to Fabio Piano or Nikolaus Rajewsky.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–3,5,7–9 (PDF 2957 kb)

Supplementary Table 4

miRNA predictions using miRDeep. The table depicts 19 predicted miRNAs from our datasets including star and precursor sequences. (XLS 46 kb)

Supplementary Table 6

Expression of 21U-RNAs. We retrieved 15,703 21U-RNA sequences from the supplementary material of Batista et al, 2009, and mapped them to the genome. The subset mapping to unique positions in the genome was quantified by reporting weighted mappings of reads that overlap with each 21U-RNA. (XLS 1488 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stoeckius, M., Maaskola, J., Colombo, T. et al. Large-scale sorting of C. elegans embryos reveals the dynamics of small RNA expression. Nat Methods 6, 745–751 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing