Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis

Abstract

We developed genetically encoded fluorescence resonance energy transfer (FRET)-based sensors that display a large ratiometric change upon Zn2+ binding, have affinities that span the pico- to nanomolar range and can readily be targeted to subcellular organelles. Using this sensor toolbox we found that cytosolic Zn2+ was buffered at 0.4 nM in pancreatic β cells, and we found substantially higher Zn2+ concentrations in insulin-containing secretory vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and properties of eCALWY sensors.
Figure 2: Determination of cytosolic free Zn2+ concentration in INS-1(832/13) cells using eCALWY variants.
Figure 3: Subcellular targeting of Zn2+ probes to insulin-storing granules.

Similar content being viewed by others

References

  1. Vallee, B.L. & Falchuk, K.H. Physiol. Rev. 73, 79–118 (1993).

    Article  CAS  Google Scholar 

  2. Lim, N.C. et al. Chem. Eur. J. 11, 38–49 (2005).

    Article  Google Scholar 

  3. Maret, W. Biometals 22, 149–157 (2009).

    Article  CAS  Google Scholar 

  4. Domaille, D.W., Que, E.L. & Chang, C.J. Nat. Chem. Biol. 4, 168–175 (2008).

    Article  CAS  Google Scholar 

  5. Dittmer, P.J., Miranda, J.G., Gorski, J.A. & Palmer, A.E. J. Biol. Chem. 284, 16289–16297 (2009).

    Article  CAS  Google Scholar 

  6. Bozym, R.A., Thompson, R.A., Goddart, R.B., Stoddard, A.K. & Fierke, C.A. ACS Chem. Biol. 1, 103–111 (2006).

    Article  CAS  Google Scholar 

  7. van Dongen, E.M. et al. J. Am. Chem. Soc. 129, 3494–3495 (2007).

    Article  CAS  Google Scholar 

  8. Vinkenborg, J.L., Evers, T.H., Reulen, S.W.A., Meijer, E.W. & Merkx, M. ChemBioChem 8, 1119–1121 (2007).

    Article  CAS  Google Scholar 

  9. Hutton, J.C., Penn, E.J. & Peshavaria, M. Biochem. J. 210, 297–305 (1983).

    Article  CAS  Google Scholar 

  10. Hohmeier, H.E. et al. Diabetes 49, 424–430 (2000).

    Article  CAS  Google Scholar 

  11. Krezel, A. & Maret, W. J. Biol. Inorg. Chem. 11, 1049–1062 (2006).

    Article  CAS  Google Scholar 

  12. Taki, M., Wolford, J.L. & O'Halloran, T.V. J. Am. Chem. Soc. 126, 712–713 (2004).

    Article  CAS  Google Scholar 

  13. Mitchell, K.J. et al. J. Cell Biol. 155, 41–51 (2001).

    Article  CAS  Google Scholar 

  14. Evers, T.H., Appelhof, M.A.M., Graaf-Heuvelmans, P.T.H.M. de Meijer, E.W. & Merkx, M. J. Mol. Biol. 374, 411–425 (2007).

    Article  CAS  Google Scholar 

  15. Krezel, A. & Maret, W. J. Am. Chem. Soc. 129, 10911–10921 (2007).

    Article  CAS  Google Scholar 

  16. Evers, T.H., Dongen, E.M.W.M., van Faesen, A.C., Meijer, E.W. & Merkx, M. Biochemistry 45, 13183–13192 (2006).

    Article  CAS  Google Scholar 

  17. Silen, L.S. Stability Constants of Metal-ion Complexes, 2nd edn. (The Chemical Society, London, 1964).

  18. Nguyen, A.W. & Daugherty, P.S. Nat. Biotechnol. 23, 355–360 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.M.J. van Duijnhoven for expressing and characterizing eZinCh, A. McDonald for assisting in the spinning disc confocal microscopy experiments, A. Tarasov for setting up the α-toxin incubation, H. Bayley (University of Oxford) for providing the α-toxin, C. Newgard (Duke University) for providing INS-1(832/13) cells, and L. Klomp and P. van den Berghe (University Medical Center Utrecht) and E.W. Meijer for their support at various stages of this research. M.M. and M.S.K. acknowledge support by the Human Frontier of Science Program (Young Investigator grant, (RGY)0068-2006). G.A.R. thanks the US National Institutes of Health for project grant RO1 DK071962-01, the Wellcome Trust for programme grants 067081/Z/02/Z and 081958/Z/07/Z, Medical Research Council (UK) for research grant G0401641, and the EU FP6 (“SaveBeta” consortium grant). T.J.N. and E.A.B. were supported by Imperial College divisional studentships.

Author information

Authors and Affiliations

Authors

Contributions

J.L.V., G.A.R. and M.M. designed research; J.L.V., T.J.N., E.A.B. and M.S.K. conducted experiments, J.L.V., T.J.R., E.A.B., M.S.K., G.A.R. and M.M. analyzed data and J.L.V., G.A.R. and M.M. wrote the paper.

Corresponding authors

Correspondence to Guy A Rutter or Maarten Merkx.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Supplementary Tables 1–5 (PDF 887 kb)

Supplementary Video 1

Ratiometric response of changes in cytosolic zinc for HEK293 expressing eCALWY-5. (AVI 6765 kb)

Supplementary Video 2

Ratiometric response of changes in vesicular zinc levels upon treatment of INS-1(832/13) cells expressing VAMP2-eZinCh with 10 μM monensin. (AVI 3797 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinkenborg, J., Nicolson, T., Bellomo, E. et al. Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6, 737–740 (2009). https://doi.org/10.1038/nmeth.1368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing