Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

In vivo fluorescence imaging with high-resolution microlenses

Abstract

Micro-optics are increasingly used for minimally invasive in vivo imaging, in miniaturized microscopes and in lab-on-a-chip devices. Owing to optical aberrations and lower numerical apertures, a main class of microlens, gradient refractive index lenses, has not achieved resolution comparable to conventional microscopy. Here we describe high-resolution microlenses, and illustrate two-photon imaging of dendritic spines on hippocampal neurons and dual-color nonlinear optical imaging of neuromuscular junctions in live mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aberration-corrected micro-objectives enable high-resolution imaging.
Figure 2: In vivo two-photon imaging with high-resolution micro-objectives permits superior resolution than with uncorrected GRIN lenses and enables visualization of neuronal dendritic spines.

Similar content being viewed by others

References

  1. Flusberg, B.A. et al. Nat. Methods 2, 941–950 (2005).

    Article  CAS  Google Scholar 

  2. Levene, M.J., Dombeck, D.A., Kasischke, K.A., Molloy, R.P. & Webb, W.W. J. Neurophysiol. 91, 1908–1912 (2004).

    Article  Google Scholar 

  3. Alencar, H., Mahmood, U., Kawano, Y., Hirata, T. & Weissleder, R. Neoplasia 7, 977–983 (2005).

    Article  Google Scholar 

  4. Flusberg, B.A., Jung, J.C., Cocker, E.D., Anderson, E.P. & Schnitzer, M.J. Opt. Lett. 30, 2272–2274 (2005).

    Article  Google Scholar 

  5. Engelbrecht, C.J., Johnston, R.S., Seibel, E.J. & Helmchen, F. Opt. Express 16, 5556–5564 (2008).

    Article  CAS  Google Scholar 

  6. Flusberg, B.A. et al. Nat. Methods 5, 935–938 (2008).

    Article  CAS  Google Scholar 

  7. Hsiung, P.L. et al. Nat. Med. 14, 454–458 (2008).

    Article  CAS  Google Scholar 

  8. Llewellyn, M.E., Barretto, R.P., Delp, S.L. & Schnitzer, M.J. Nature 454, 784–788 (2008).

    Article  CAS  Google Scholar 

  9. Lin, K.Y., Maricevich, M., Bardeesy, N., Weissleder, R. & Mahmood, U. Transl. Oncol. 1, 84–94 (2008).

    Article  Google Scholar 

  10. Roulet, J.C. et al. Anal. Chem. 74, 3400–3407 (2002).

    Article  CAS  Google Scholar 

  11. Messerschmidt, B., McIntyre, B.L. & Houde-Walter, S.N. Appl. Opt. 35, 5670–5676 (1996).

    Article  CAS  Google Scholar 

  12. Sickenger, H., Falkenstoerfer, O.R., Lindlein, N. & Schwider, J. Opt. Eng. 33, 2680–2686 (1994).

    Article  Google Scholar 

  13. Born, M. & Wolf, E. Principles of Optics (Cambridge University Press, Cambridge, UK, 1999).

    Book  Google Scholar 

  14. Jung, J.C., Mehta, A.D., Aksay, E., Stepnoski, R. & Schnitzer, M.J. J. Neurophysiol. 92, 3121–3133 (2004).

    Article  Google Scholar 

  15. Knott, G. & Holtmaat, A. Brain Res. Rev. 58, 282–289 (2008).

    Article  Google Scholar 

  16. Jung, J.C. & Schnitzer, M.J. Opt. Lett. 28, 902–904 (2003).

    Article  Google Scholar 

  17. Messerschmidt, B., Possner, U. & Houde-Walter, S.N. Appl. Opt. 36, 8145–8152 (1997).

    Article  CAS  Google Scholar 

  18. Messerschmidt, B., Possner, T. & Goering, R. Appl. Opt. 34, 7825–7830 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US National Institute of Neurological Disorders and Stroke (M.J.S.), GRINTech GmbH (B.M.) and the Stanford Biophysics (R.P.J.B.) training grant from the US National Institutes of Health for support of our work. We thank A. Attardo, L.D. Burns, E. Ho, J. Kobelke, S. Plochowietz and D. Profitt for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J Schnitzer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barretto, R., Messerschmidt, B. & Schnitzer, M. In vivo fluorescence imaging with high-resolution microlenses. Nat Methods 6, 511–512 (2009). https://doi.org/10.1038/nmeth.1339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1339

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing