Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetically timed, activity-sensor and rainbow transsynaptic viral tools


We developed retrograde, transsynaptic pseudorabies viruses (PRVs) with genetically encoded activity sensors that optically report the activity of connected neurons among spatially intermingled neurons in the brain. Next we engineered PRVs to express two differentially colored fluorescent proteins in a time-shifted manner to define a time period early after infection to investigate neural activity. Finally we used multiple-colored PRVs to differentiate and dissect the complex architecture of brain regions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: As1-PRV08 reports neural activity.
Figure 2: Timer PRVs define a time window early after infection.
Figure 3: Multiple, colored PRVs reveal spatial organization of parallel circuits.


  1. Wickersham, I.R. et al. Neuron 53, 639–647 (2007).

    Article  CAS  Google Scholar 

  2. Smith, B.N. et al. Proc. Natl. Acad. Sci. USA 97, 9264–9269 (2000).

    Article  CAS  Google Scholar 

  3. Jons, A. & Mettenleiter, T.C. J. Virol. Methods 66, 283–292 (1997).

    Article  CAS  Google Scholar 

  4. Boldogkoi, Z., Erdelyi, F., Sik, A., Freund, T.F. & Fodor, I. Luminescence 14, 69–74 (1999).

    Article  CAS  Google Scholar 

  5. Banfield, B.W., Kaufman, J.D., Randall, J.A. & Pickard, G.E. J. Virol. 77, 10106–10112 (2003).

    Article  CAS  Google Scholar 

  6. Viney, T.J. et al. Curr. Biol. 17, 981–988 (2007).

    Article  CAS  Google Scholar 

  7. Heim, N. & Griesbeck, O. J. Biol. Chem. 279, 14280–14286 (2004).

    Article  CAS  Google Scholar 

  8. Bartha, A. Magyar Allatorvosok Lapja 16, 42–45 (1961).

    Google Scholar 

  9. Kaplan, A.S. & Vatter, A.E. Virology 7, 394–407 (1959).

    Article  CAS  Google Scholar 

  10. Husak, P.J., Kuo, T. & Enquist, L.W. J. Virol. 74, 10975–10983 (2000).

    Article  CAS  Google Scholar 

  11. Pickard, G.E. et al. J. Neurosci. 22, 2701–2710 (2002).

    Article  CAS  Google Scholar 

  12. De Paola, V., Arber, S. & Caroni, P. Nat. Neurosci. 6, 491–500 (2003).

    Article  CAS  Google Scholar 

  13. Heim, N. et al. Nat. Methods 4, 127–129 (2007).

    Article  CAS  Google Scholar 

  14. Hattar, S. et al. J. Comp. Neurol. 497, 326–349 (2006).

    Article  Google Scholar 

  15. Provencio, I., Rollag, M.D. & Castrucci, A.M. Nature 415, 493 (2002).

    Article  CAS  Google Scholar 

  16. Baver, S.B., Pickard, G.E., Sollars, P.J. & Pickard, G.E. Eur. J. Neurosci. 27, 1763–1770 (2008).

    Article  Google Scholar 

  17. Zemanick, M.C., Strick, P.L. & Dix, R.D. Proc. Natl. Acad. Sci. USA 88, 8048–8051 (1991).

    Article  CAS  Google Scholar 

  18. Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5, 805–811 (2008).

    Article  CAS  Google Scholar 

  19. Pomeranz, L.E., Reynolds, A.E. & Hengartner, C.J. Microbiol. Mol. Biol. Rev. 69, 462–500 (2005).

    Article  CAS  Google Scholar 

Download references


We thank S. Djaffer for technical assistance. The following researchers provided materials: I. Provencio (University of Virginia, Charlottesville), melanopsin antibody; D.W. Piston (University of Maryland School of Medicine, Baltimore), vector encoding mCerulean; P. Caroni (Friedrich Miescher Insitute, Basel), vector encoding MARCKS-GFP and pThy1-mEGFP vector; R.E. Campbell (University of Alberta, Edmonton), vector encoding mTFP1; R.Y. Tsien (University of California, San Diego), vectors encoding mRFP1 and mCherry; R.H. Scheller (Genentech), vector encoding VAMP-GFP; O. Griesbeck (Max Planck Institute of Neurobiology, Martinsried), vector encoding TN-L15. F. Rijli commented on the manuscript. This study was supported by Novartis Research Foundation funds, US Office of Naval Research Naval International Cooperative Opportunities in Science and Technology Program grant, Marie Curie Excellence grant and Human Frontiers Science Program Young Investigator grant to B.R.; Hungarian National Fund for Scientific Research and Human Frontiers Science Program Young Investigator grant to Z.B.; Swiss National Center of Competence in Research in Genetics fellowship to V.B.; and Human Frontiers Science Program fellowship to G.B.A.

Author information

Authors and Affiliations



K.B., E.P., D.T., J.S.T., I.F.T., V.B., P.S.L. and B.G.S. engineered the plasmids. Z.B. made the PRVs. K.B. performed PRV injections, time-lapse, two-photon and confocal imaging, and electrophysiological experiments as well as immunohistochemistry and data analysis. G.B.A. helped with two-photon imaging and electrophysiological experiments. D.B. wrote the data acquisition and analysis software for two-photon microscopy. T.J.V. helped with Ti-PRV injections. J.D. built the two-photon microscope. B.R., Z.B., K.B. and G.B.A. designed the experiments.

Corresponding author

Correspondence to Botond Roska.

Ethics declarations

Competing interests

K.B., Z.B. and B.R. are authors on a European patent application 08 152 609.7 that covers the work described in the manuscript.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–4, Supplementary Results, Supplementary Methods (PDF 1111 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boldogkői, Z., Balint, K., Awatramani, G. et al. Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6, 127–130 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing