Perspective | Published:

Microscopy and its focal switch

Nature Methods volume 6, pages 2432 (2009) | Download Citation

Subjects

Abstract

Until not very long ago, it was widely accepted that lens-based (far-field) optical microscopes cannot visualize details much finer than about half the wavelength of light. The advent of viable physical concepts for overcoming the limiting role of diffraction in the early 1990s set off a quest that has led to readily applicable and widely accessible fluorescence microscopes with nanoscale spatial resolution. Here I discuss the principles of these methods together with their differences in implementation and operation. Finally, I outline potential developments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Leçons d'optique physique (Victor Masson et fils, Paris, 1869).

  2. 2.

    Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikr. Anat. 9, 413–468 (1873).

  3. 3.

    On the theory of optical images, with special reference to the microscope. Philos. Mag. XLII, 167–195 (1896).

  4. 4.

    Double confocal microscope. European Patent 0491289 (1990).

  5. 5.

    & Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt. Commun. 93, 277–282 (1992).

  6. 6.

    & 4Pi-confocal images with axial superresolution. J. Microsc. 183, 189–193 (1996).

  7. 7.

    , & Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range. J. Microsc. 185, 1–5 (1997).

  8. 8.

    , & Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc. SPIE 2412, 147–156 (1995).

  9. 9.

    , & I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195, 10–16 (1999).

  10. 10.

    , , & Strategies for attaining superresolution using spectroscopic data as constraints. Appl. Opt. 24, 154–160 (1985).

  11. 11.

    & Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19, 780–782 (1994).

  12. 12.

    , , , & Fluorescence microscopy with diffraction resolution limit broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

  13. 13.

    & Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl. Phys. B 60, 495–497 (1995).

  14. 14.

    , & Saturated patterned excitation microscopy - a concept for optical resolution improvement. J. Opt. Soc. Am. A 19, 1599–1609 (2002).

  15. 15.

    Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

  16. 16.

    Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003).

  17. 17.

    Strategy for far-field optical imaging and writing without diffraction limit. Phys. Lett. A 326, 140–145 (2004).

  18. 18.

    , & Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 14, 599–609 (2004).

  19. 19.

    , , & Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).

  20. 20.

    et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

  21. 21.

    , & Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

  22. 22.

    , & Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

  23. 23.

    & Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006).

  24. 24.

    et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. 47, 6172–6176 (2008).

  25. 25.

    et al. Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat. Methods 5, 947–949 (2008).

  26. 26.

    et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5, 943–945 (2008).

  27. 27.

    Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

  28. 28.

    et al. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc. Res. Tech. 70, 269–280 (2007).

  29. 29.

    et al. Resolution scaling in STED microscopy. Opt. Express 16, 4154–4162 (2008).

  30. 30.

    Increasing the resolution in fluorescence light microscopy by point-spread-function engineering. in Topics in Fluorescence Spectroscopy (ed. Lakowicz, J.R.) 361–422 (Plenum, New York, 1997).

  31. 31.

    , & Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98, 218103 (2007).

  32. 32.

    & Nanoscale resolution in far-field fluorescence microscopy. in Science of Microscopy (eds., Hawkes, P.W. and Spence, J.C.H) 790–834 (Springer, New York, 2007).

  33. 33.

    The Physical Principles of the Quantum Theory (Chicago Univ. Press, Chicago, 1930).

  34. 34.

    Position measurement with a resolution and noise-limited instrument. Rev. Sci. Instrum. 57, 1152–1157 (1986).

  35. 35.

    Proposed method for molecular optical imaging. Opt. Lett. 20, 237–239 (1995).

  36. 36.

    , , & Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

  37. 37.

    et al. Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem. Int. Ed. 46, 6266–6270 (2007).

  38. 38.

    et al. Fluorescence nanoscopy in whole cells by asnychronous localization of photoswitching emitters. Biophys. J. 93, 3285–3290 (2007).

  39. 39.

    et al. Resolution of λ/10 in fluorescence microscopy using fast single molecule photo-switching. Appl. Phys. A Mater. Sci. Process. 88, 223–226 (2007).

  40. 40.

    , , & Superresolution microscopy on the basis of engineered dark states. J. Am. Chem. Soc. 10.1021/ja806590m (2008).

  41. 41.

    , , & Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).

  42. 42.

    et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl. Acad. Sci. USA 104, 20308–20313 (2007).

  43. 43.

    , , & Dynamic far-field fluorescence nanoscopy. New J. Phys. 9, 435 (2007).

  44. 44.

    et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

  45. 45.

    & Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

  46. 46.

    & Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

  47. 47.

    Single-molecule mountains yield nanoscale cell images. Nat. Methods 3, 781–782 (2006).

  48. 48.

    & Fluorescence nanoscopy goes multicolor. Nat. Biotechnol. 25, 1234–1235 (2007).

  49. 49.

    , , & Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

  50. 50.

    , , , & Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. USA 105, 18982–18987 (2008).

  51. 51.

    , , & Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys. Rev. Lett. 94, 178104 (2005).

  52. 52.

    et al. Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J. Am. Chem. Soc. 129, 16132–16141 (2007).

  53. 53.

    , & Two- and multiphoton detection as an imaging mode and means of increasing the resolution in far-field light microscopy. Bioimaging 3, 64–69 (1995).

  54. 54.

    , , & Superresolution by localization of quantum dots using blinking statistics. Opt. Express 13, 7052–7062 (2005).

  55. 55.

    & Breaking the resolution limit in light microscopy. Brief. Funct. Genomic. Proteomic 5, 289–301 (2006).

  56. 56.

    , & Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

  57. 57.

    , & Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999).

  58. 58.

    , & Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Ann. Phys. 8, 115–133 (1999).

  59. 59.

    & Far-field fluorescence microscopy with repetetive excitation. Eur. Phys. J. D 6, 283–290 (1999).

  60. 60.

    Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).

  61. 61.

    , , & High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J. Microsc. 189, 118–136 (1998).

  62. 62.

    et al. Nano-sizing of specific gene domains in intact human cell nuclei by Spatially Modulated Illumination (SMI) light microscopy. Biophys. J. 88, 4312–4318 (2005).

  63. 63.

    , , , & Far-field fluorescence microscopy beyond the diffraction limit. J. Opt. Soc. Am. A 16, 909–915 (1999).

  64. 64.

    , , & Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl. Acad. Sci. USA 101, 11298–11303 (2004).

  65. 65.

    Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

  66. 66.

    A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. 6, 356 (1928).

  67. 67.

    , & Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984).

  68. 68.

    , , & Development of a 500 Å resolution light microscope. Ultramicroscopy 13, 227–231 (1984).

  69. 69.

    , , & Near-field fluorescence imaging of cytoskeletal actin. Bioimaging 1, 129–136 (1993).

  70. 70.

    Supergain antennas and optical resolving power. Nuovo Cimento 9 Suppl., 426–435 (1952).

  71. 71.

    Optical systems with resolving powers exceeding the classical limit. J. Opt. Soc. Am. 56, 1463–1472 (1966).

  72. 72.

    Microscopy apparatus. US patent 3,013,467 (1961).

  73. 73.

    & The theory of scanning microscopes with Gaussian pupil functions. J. Microsc. 114, 179–197 (1978).

  74. 74.

    & Considerations on a laser-scanning-microscope with high resolution and depth of field. Microsc. Acta 81, 31–44 (1978).

  75. 75.

    et al. Superresolution in three-dimensional images of fluorescence in cells with minimal light exposure. Science 268, 1483–1487 (1995).

  76. 76.

    Improvement of lateral resolution in far-field light microscopy using two-photon excitation with offset beams. Opt. Commun. 106, 19–24 (1994).

  77. 77.

    & Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88, 163901 (2002).

  78. 78.

    et al. Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem 9, 321–326 (2008).

  79. 79.

    et al. Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5, 527–529 (2008).

  80. 80.

    , & Immunofluorescence stimulated emission depletion microscopy. Nat. Biotechnol. 21, 1303–1304 (2003).

  81. 81.

    et al. Spherical nanosized spot unravel the interior of cells. Nat. Methods 4, 81–86 (2008).

  82. 82.

    , , , & Isotropic 3D Nanoscopy based on single emitter switching. Opt. Express 16, 20774–20788 (2008).

  83. 83.

    & 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J. Struct. Biol. 123, 236–247 (1998).

  84. 84.

    & Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15, 207–215 (2005).

  85. 85.

    et al. I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys. J. 94, 4971–4983 (2008).

  86. 86.

    , , , & STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

  87. 87.

    et al. Nanoscale resolution with focused light: stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts. in Handbook of Biological Confocal Microscopy (ed. Pawley, J.) 571–579 (Springer, New York, 2006).

  88. 88.

    , & Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A 77, 859–860 (2003).

Download references

Acknowledgements

I thank E. Rittweger and B. Rankin for help in preparing the figures and various suggestions for improving the presentation. Critical reading by A. Schönle, and also by S. Jakobs, C. Eggeling and J. Jethwa, is gratefully acknowledged.

Author information

Affiliations

  1. Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, 37070 Göttingen, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany

    • Stefan W Hell

Authors

  1. Search for Stefan W Hell in:

Corresponding author

Correspondence to Stefan W Hell.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmeth.1291

Further reading