Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epitope mapping of antibodies using bacterial surface display

Abstract

We describe a method for mapping the epitopes recognized by antibodies, based on bacterial surface expression of antigen protein fragments followed by antibody-based flow-cytometric sorting. We analyzed the binding sites of both monoclonal and polyclonal antibodies directed to three human protein targets: (i) the human epidermal growth factor receptor 2 (HER2), (ii) ephrin-B3 and (iii) the transcription factor SATB2. All monoclonal antibodies bound a single epitope, whereas the polyclonal antibodies showed, in each case, a binding pattern with one to five separate epitopes. A comparison of polyclonal and monoclonal antibodies raised to the same antigen showed overlapping binding epitopes. We also demonstrated that bacterial cells with displayed protein fragments can be used as affinity ligands to generate epitope-specific antibodies. Our approach shows a path forward for systematic validation of antibodies for epitope specificity and cross-reactivity on a whole-proteome level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic outline of the epitope mapping approach.
Figure 2: Schematic representation of recombinant surface protein and analysis of functional surface expression.
Figure 3: Epitope mapping of antibodies toward human HER2 and the Flag peptide.
Figure 4: Epitope mapping of monospecific antibodies toward human ephrin-B3.
Figure 5: Epitope mapping of antibodies toward SATB2.

Similar content being viewed by others

References

  1. Uhlén, M. Mapping the human proteome using antibodies. Mol. Cell. Proteomics 6, 1455–1456 (2007).

    PubMed  Google Scholar 

  2. Barlow, D.J., Edwards, M.S. & Thornton, J.M. Continuous and discontinuous protein antigenic determinants. Nature 322, 747–748 (1986).

    Article  CAS  Google Scholar 

  3. van Zonneveld, A.J., van den Berg, B.M., van Meijer, M. & Pannekoek, H. Identification of functional interaction sites on proteins using bacteriophage-displayed random epitope libraries. Gene 167, 49–52 (1995).

    Article  CAS  Google Scholar 

  4. Geysen, H.M., Meloen, R.H. & Barteling, S.J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81, 3998–4002 (1984).

    Article  CAS  Google Scholar 

  5. Reineke, U., Kramer, A. & Schneider-Mergener, J. Antigen sequence- and library-based mapping of linear and discontinuous protein-protein-interaction sites by spot synthesis. Curr. Top. Microbiol. Immunol. 243, 23–36 (1999).

    CAS  PubMed  Google Scholar 

  6. Christmann, A., Wentzel, A., Meyer, C., Meyers, G. & Kolmar, H. Epitope mapping and affinity purification of monospecific antibodies by Escherichia coli cell surface display of gene-derived random peptide libraries. J. Immunol. Methods 257, 163–173 (2001).

    Article  CAS  Google Scholar 

  7. Petersen, G., Song, D., Hugle-Dorr, B., Oldenburg, I. & Bautz, E.K. Mapping of linear epitopes recognized by monoclonal antibodies with gene-fragment phage display libraries. Mol. Gen. Genet. 249, 425–431 (1995).

    Article  CAS  Google Scholar 

  8. Pizzi, E., Cortese, R. & Tramontano, A. Mapping epitopes on protein surfaces. Biopolymers 36, 675–680 (1995).

    Article  CAS  Google Scholar 

  9. Cunningham, B.C. & Wells, J.A. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244, 1081–1085 (1989).

    Article  CAS  Google Scholar 

  10. Sidhu, S.S. & Koide, S. Phage display for engineering and analyzing protein interaction interfaces. Curr. Opin. Struct. Biol. 17, 481–487 (2007).

    Article  CAS  Google Scholar 

  11. Weiss, G.A., Watanabe, C.K., Zhong, A., Goddard, A. & Sidhu, S.S. Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc. Natl. Acad. Sci. USA 97, 8950–8954 (2000).

    Article  CAS  Google Scholar 

  12. Chao, G., Cochran, J.R. & Wittrup, K.D. Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J. Mol. Biol. 342, 539–550 (2004).

    Article  CAS  Google Scholar 

  13. Levy, R. et al. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J. Mol. Biol. 365, 196–210 (2007).

    Article  CAS  Google Scholar 

  14. Götz, F. Staphylococcus carnosus: a new host organism for gene cloning and protein production. Soc. Appl. Bacteriol. Symp. Ser. 19, 49S–53S (1990).

    PubMed  Google Scholar 

  15. Wernérus, H. & Ståhl, S. Biotechnological applications for surface-engineered bacteria. Biotechnol. Appl. Biochem. 40, 209–228 (2004).

    Article  Google Scholar 

  16. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  Google Scholar 

  17. Smith, G.P. & Petrenko, V.A. Phage display. Chem. Rev. 97, 391–410 (1997).

    Article  CAS  Google Scholar 

  18. Wittrup, K.D. Protein engineering by cell-surface display. Curr. Opin. Biotechnol. 12, 395–399 (2001).

    Article  CAS  Google Scholar 

  19. Schechter, A.L. et al. The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 229, 976–978 (1985).

    Article  CAS  Google Scholar 

  20. Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  21. Löfblom, J., Kronqvist, N., Uhlén, M., Ståhl, S. & Wernérus, H. Optimization of electroporation-mediated transformation: Staphylococcus carnosus as model organism. J. Appl. Microbiol. 102, 736–747 (2007).

    Article  Google Scholar 

  22. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  23. Agaton, C. et al. Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues. Mol. Cell. Proteomics 2, 405–414 (2003).

    Article  CAS  Google Scholar 

  24. Benson, M.D. et al. Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc. Natl. Acad. Sci. USA 102, 10694–10699 (2005).

    Article  CAS  Google Scholar 

  25. Wang, X.X., Cho, Y.K. & Shusta, E.V. Mining a yeast library for brain endothelial cell-binding antibodies. Nat. Methods 4, 143–145 (2007).

    Article  CAS  Google Scholar 

  26. Feldhaus, M.J. et al. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat. Biotechnol. 21, 163–170 (2003).

    Article  CAS  Google Scholar 

  27. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  28. Michaud, G.A. et al. Analyzing antibody specificity with whole proteome microarrays. Nat. Biotechnol. 21, 1509–1512 (2003).

    Article  CAS  Google Scholar 

  29. Flicek, P. et al. Ensembl 2008. Nucleic Acids Res. 36, D707–D714 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to P.-Å. Nygren and J. Lundeberg for comments and advice. M. Hansson and H. Johannesson at Atlas Antibodies AB are acknowledged for funding the generation of SATB2 monoclonals. This work was supported by funding from the ProNova center (project B3) and the Knut and Alice Wallenberg foundation. J.L. was partially supported by grant 621-2003-2876 from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Uhlén.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Methods (PDF 1241 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rockberg, J., Löfblom, J., Hjelm, B. et al. Epitope mapping of antibodies using bacterial surface display. Nat Methods 5, 1039–1045 (2008). https://doi.org/10.1038/nmeth.1272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing