Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum dots versus organic dyes as fluorescent labels

Abstract

Suitable labels are at the core of luminescence and fluorescence imaging and sensing. One of the most exciting, yet also controversial, advances in label technology is the emerging development of quantum dots (QDs)—inorganic nanocrystals with unique optical and chemical properties but complicated surface chemistry—as in vitro and in vivo fluorophores. Here we compare and evaluate the differences in physicochemical properties of common fluorescent labels, focusing on traditional organic dyes and QDs. Our aim is to provide a better understanding of the advantages and limitations of both classes of chromophores, to facilitate label choice and to address future challenges in the rational design and manipulation of QD labels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectra of QDs and organic dyes.
Figure 2: Fluorescence decay behavior.
Figure 3: Overview of strategies to prepare water-dispersible QDs and QD bioconjugates.
Figure 4

Similar content being viewed by others

References

  1. Mason, W.T. Fluorescent and luminescent probes for biological activity 2nd edn. (Academic Press, London, 1999).

    Google Scholar 

  2. Lakowicz, J.R. Principles of fluorescence spectroscopy 3rd edn. (Springer Science+Business Media, New York, 2006).

    Google Scholar 

  3. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Natl. Rev. 3, 906–918 (2002).

    CAS  Google Scholar 

  4. Waggoner, A. Fluorescent labels for proteomics and genomics. Curr. Opin. Chem. Biol. 10, 62–66 (2006).

    CAS  PubMed  Google Scholar 

  5. Hemmila, I. & Laitala, V. Progress in lanthanides as luminescent probes. J. Fluoresc. 15, 529–542 (2005).

    CAS  PubMed  Google Scholar 

  6. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005). An overview of fluorescent proteins and a guide to choosing the best fluorescent proteins for a broad variety of imaging applications.

    CAS  PubMed  Google Scholar 

  7. Alivisatos, A.P. Semiconductor clusters, nanocrystals, and QDs. Science 271, 934–937 (1996).

    Google Scholar 

  8. Weller, H. Quantum size colloids: from size-dependent properties of discrete particles to self-organized superstructures. Curr. Opin. Colloid Interface Sci. 3, 194–199 (1998).

    CAS  Google Scholar 

  9. Sun, Y.P. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006).

    CAS  PubMed  Google Scholar 

  10. Warner, J.H., Hoshino, A., Yamamoto, K. & Tilley, R.D. Water-soluble photoluminescent silicon QDs. Angew. Chem. Int. Edn. 44, 4550–4554 (2005).

    CAS  Google Scholar 

  11. Fu, H.-B. & Yao, J.N. Size effects on the optical properties of organic nanoparticles. J. Am. Chem. Soc. 123, 1434–1439 (2001).

    CAS  Google Scholar 

  12. Seydack, M. Nanoparticle labels in immunosensing using optical detection methods. Biosens. Bioelectron. 20, 2454–2469 (2005).

    CAS  PubMed  Google Scholar 

  13. Burns, A., Ow, H. & Wiesner, U. Fluorescent core-shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chem. Soc. Rev. 35, 1028–1042 (2006).

    CAS  PubMed  Google Scholar 

  14. Chen, C.-S., Yao, J. & Durst, R.A. Liposome encapsulation of fluorescent nanoparticles: QDs and silica nanoparticles. J. Nanopart. Res. 8, 1033–1038 (2006).

    CAS  Google Scholar 

  15. Corstjen, P.L. et al. Infrared up-converting phosphors for bioassays. IEEE Proc. Nanobiotechnol. 152, 64–72 (2005).

    Google Scholar 

  16. Dabbousi, B.O. et al. (CdSe)ZnS core-shell qds: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    CAS  Google Scholar 

  17. Dähne, S., Resch-Genger, U. & Wolfbeis, O.S., eds. Near-infrared dyes for high technology applications. NATO ASI Series, 3. Hightechnology Vol. 52, (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998).

    Google Scholar 

  18. Yu, W.W., Qu, L., Guo, W. & Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003).

    CAS  Google Scholar 

  19. Kuçur, E., Boldt, F.M., Cavaliere-Jaricot, S., Ziegler, J. & Nann, T. Quantitative analysis of the CdSe nanocrystal concentration by comparative techniques. Anal. Chem. 79, 8987–8993 (2007).

    PubMed  Google Scholar 

  20. Sackett, D.L. & Wolff, J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal. Biochem. 167, 228–234 (1987).

    CAS  PubMed  Google Scholar 

  21. Rueda, D. & Walter, N.G. Fluorescent energy transfer readout of an aptazyme-based biosensor. Methods Mol. Biol. 335, 289–310 (2006).

    CAS  PubMed  Google Scholar 

  22. Seybold, P.G., Gouterman, M. & Callis, J. Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes. Photochem. Photobiol. 9, 229–242 (1969).

    CAS  PubMed  Google Scholar 

  23. Mujumdar, R.B., Ernst, L.A., Mujumdar, S.R., Lewis, C.J. & Waggoner, A.S. Cyanine dye labeling agents: sulfoindocyanine succidimidyl esters. Bioconj. Chem. 4, 105–111 (1993).

    CAS  Google Scholar 

  24. Gruber, H.J. et al. Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalently linking to IgC and noncovalent binding to avidin. Bioconj. Chem. 11, 696–704 (2000).

    CAS  Google Scholar 

  25. Soper, S.A. & Mattingly, Q.L. Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes: implications to the design of near-IR fluorochromes with high fluorescence efficiencies. J. Am. Chem. Soc. 116, 3744–3752 (1994).

    CAS  Google Scholar 

  26. Wang, X., Qu, L., Zhang, J., Peng, X. & Xiao, M. Surface-related emission in highly luminescent CdSe QDs. Nano Lett. 3, 1103–1106 (2003).

    CAS  Google Scholar 

  27. Talapin, D.V. et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J. Phys. Chem. B 108, 18826–18831 (2004).

    CAS  Google Scholar 

  28. Spanhel, L., Haase, M., Weller, H. & Henglein, A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 109, 5649–5655 (1987).

    CAS  Google Scholar 

  29. Xu, S., Kumar, S. & Nann, T. Rapid synthesis of high-quality InP nanocrystals. J. Am. Chem. Soc. 128, 1054–1055 (2006).

    CAS  PubMed  Google Scholar 

  30. Xu, S., Ziegler, J. & Nann, T. Synthesis of highly luminescent InP and InP/ZnS nanocrystals via one pot route. J. Mater. Chem. 18, 2653–2656 (2008).

    CAS  Google Scholar 

  31. Jiang, W., Singhal, A., Zheng, J., Wang, C. & Chan, W.C. Optimizing the synthesis of red- to near-IR-emitting CdS-capped CdTexSe1-x alloyed quantum dots for biomedical imaging. Chem. Mater. 18, 4845–4854 (2006).

    CAS  Google Scholar 

  32. Shavel, A., Gaponik, N. & Eychmüller, A. Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment. J. Phys. Chem. B 110, 19280–19284 (2006).

    CAS  PubMed  Google Scholar 

  33. Hinds, S. et al. NIR-Emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. J. Am. Chem. Soc. 129, 7218–7219 (2007).

    CAS  PubMed  Google Scholar 

  34. Fernee, M.J., Jensen, P. & Rubinsztein-Dunlop, H. Origin of the large homogeneous line widths obtained fro strongly quantum confined PbS nanocrystals at room temperature. Nanotechnology 17, 956–962 (2006).

    CAS  PubMed  Google Scholar 

  35. Du, H. et al. Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2, 1321–1324 (2002).

    CAS  Google Scholar 

  36. Lifshitz, E. et al. Air-stable PbSe/PbS and PbSe/PbSex-S1-x core shell nanocrystal quantum dots and their applications. J. Phys. Chem. B 110, 25356–25365 (2007).

    Google Scholar 

  37. Soper, S.A., Nutter, H.L., Keller, R.A., Davis, L.M. & Shera, E.B. The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy. Photochem. Photobiol. 57, 972–977 (1993).

    CAS  Google Scholar 

  38. Xu, C., Zipfel, W., Shera, J.B., Williams, R.M. & Webb, W.W. Multiphoton fluorescence excitation: new spectral window for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Larson, D.R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1437 (2003).

    CAS  PubMed  Google Scholar 

  40. He, G.S. et al. Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range. Opt. Express 15, 12818–12833 (2007).

    CAS  PubMed  Google Scholar 

  41. Padilha, L.A. et al. Two-photon absorption in CdTe quantum dots. Opt. Express 13, 6460–6467 (2005).

    CAS  PubMed  Google Scholar 

  42. Clapp, A.R. et al. Two-Photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications. Adv. Mater. 19, 1921–1926 (2007). First example of the use of two-photon excitation for the application of QD-organic dye FRET pairs; highlights the potential of this approach for bioanalytical applications.

    CAS  Google Scholar 

  43. Mihindukulasuriya, S.H., Morcone, T.K. & McGown, L.B. Characterization of acridone dyes for use in four-decay detection in DNA sequencing. Electrophoresis 24, 20–25 (2003). Example of lifetime multiplexing with organic dyes.

    CAS  PubMed  Google Scholar 

  44. Dahan, M. et al. Time-gated biological imaging by use of colloidal QDs. Opt. Lett. 26, 825–827 (2003). Underlines the potential of comparatively long-lived QDs for applications of time-gated emission.

    Google Scholar 

  45. Grecco, H.E. et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc. Res. Tech. 65, 169–179 (2005).

    Google Scholar 

  46. Schlegel, G., Bohnenberger, J., Potapova, I. & Mews, A. Fluorescence decay time of single semiconductor nanocrystals. Phys. Rev. Lett. 88, 137401 (2002).

    PubMed  Google Scholar 

  47. Zhang, K., Chang, H., Fu, A., Alivisatos, A.P. & Yang, H. Continuous distribution of emission states from single CdSe/ZnS QDs. Nano Lett. 6, 843–847 (2006).

    PubMed  Google Scholar 

  48. Chan, W.C.W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    CAS  PubMed  Google Scholar 

  49. Verwey, E.J. & Overbeek, J.T.G., eds. Theory of the stability of lyophobic colloids. (Elsevier, Amsterdam, 1948).

    Google Scholar 

  50. Nann, T. Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chem. Commun. 13, 1735–1736 (2005).

    Google Scholar 

  51. Mattheakis, L.C. et al. Optical coding of mammalian cells using semiconductor quantum dots. Anal. Biochem. 327, 200–208 (2004).

    CAS  PubMed  Google Scholar 

  52. Darbandi, M. & Nann, T. Single quantum dots in silica spheres by microemulsion synthesis. Chem. Mater. 17, 5720–5725 (2005).

    CAS  Google Scholar 

  53. Parak, W.J. et al. Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem. Mater. 14, 2113–2119 (2002).

    CAS  Google Scholar 

  54. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    CAS  PubMed  Google Scholar 

  55. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    CAS  PubMed  Google Scholar 

  56. Mitchell, G.P., Mirkin, C.A. & Letsinger, R.L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121, 8122–8123 (1999).

    CAS  Google Scholar 

  57. Ballou, B., Lagerholm, B.C., Ernst, L., Bruchez, M. & Waggoner, A. Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15, 79–86 (2004).

    CAS  PubMed  Google Scholar 

  58. Wang, Q. et al. A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation. J. Am. Chem. Soc. 129, 6380–6381 (2007).

    CAS  PubMed  Google Scholar 

  59. Xing, Y. et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–1165 (2007).

    CAS  PubMed  Google Scholar 

  60. Medintz, I.L., Uyeda, H.T., Goldman, E.R. & Mattoussi, H. QD bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    CAS  PubMed  Google Scholar 

  61. Mason, J.N. et al. Novel fluorescence-based approaches for the study of biogenic amine transporter localization, activity and regulation. J. Neurosci. Methods 143, 3–25 (2005).

    CAS  PubMed  Google Scholar 

  62. Goldman, E.R. et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76, 684–688 (2004). Excellent example of the unique potential of QDs for spectral (color) multiplexing applications in bioanalysis and biosensing.

    CAS  PubMed  Google Scholar 

  63. Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).

    CAS  PubMed  Google Scholar 

  64. O'Hare, H.M., Johnsson, K. & Gautier, A. Chemical probes shed light on protein function. Curr. Opin. Struct. Biol. 17, 488–494 (2007). Recent review of the techniques emerging for site-specific labeling of proteins with organic dyes.

    CAS  PubMed  Google Scholar 

  65. Marks, K.M. & Nolan, G.P. Chemical labeling strategies for cell biology. Nat. Methods 3, 591–596 (2006). In this review, research questions that can be addressed using site-specific labeling are highlighted and a comparison of the varying labeling techniques that have been developed is given.

    CAS  PubMed  Google Scholar 

  66. Wang, H. & Chen, X. Site-specifically modified fusion proteins for molecular imaging. Front. Biosci. 13, 1716–1732 (2008).

    CAS  PubMed  Google Scholar 

  67. Miyawaki, A., Sawano, A. & Kogure, T. Lighting up cells: labeling proteins with fluorophores. Nat. Cell Biol. 5, S1–S7 (2003).

    Google Scholar 

  68. Los, G.V. et al. HaloTag: A novel protein labelling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    CAS  PubMed  Google Scholar 

  69. Miller, L.W., Cai, Y., Sheetz, M.P. & Cornish, V.W. In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat. Methods 2, 255–257 (2005).

    CAS  PubMed  Google Scholar 

  70. Torchilin, V.P. et al. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc. Acad. Sci. Natl. USA 100, 1972–1977 (2003).

    CAS  Google Scholar 

  71. Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102, 7583–7588 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Parak, W.J., Pellegrino, T. & Plank, C. Labelling of cells with quantum dots. Nanotechnology 16, R9–R25 (2005). An excellent overview of the use of QDs in cell biology.

    CAS  PubMed  Google Scholar 

  73. Rozenzhak, S.M. et al. Cellular internalization and targeting of semiconductor QDs. Chem. Commun. 17, 2217–2219 (2005).

    Google Scholar 

  74. Chen, F. & Gerion, D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 4, 1827–1832 (2004).

    CAS  Google Scholar 

  75. Jaiswal, J.K., Mattoussi, H., Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using QD bioconjugates. Nat. Biotechnol. 21, 47–51 (2003).

    CAS  PubMed  Google Scholar 

  76. Sun, Y.H. et al. Photostability and pH sensitivity of CdSe/ZnSe/ZnS quantum dots in living cells. Nanotechnology 17, 4469–4476 (2006).

    Google Scholar 

  77. Zhou, M. & Ghosh, I. Current trends in peptide science. Quantum dots and peptides: a bright future together. Biopolymers 88, 325–339 (2006).

    Google Scholar 

  78. Hussey, S.L. & Peterson, B.R. Efficient delivery of streptavidin to mammalian cCells: Clathrin-mediated endocytosis regulated by a synthetic ligand. J. Am. Chem. Soc. 124, 6265–6273 (2002).

    CAS  PubMed  Google Scholar 

  79. Fillon, Y.A., Anderson, J.P. & Chmielewski, J. Cell penetrating agents based on a polyproline helix scaffold. J. Am. Chem. Soc. 127, 11798–11799 (2005).

    CAS  PubMed  Google Scholar 

  80. Buschmann, V., Weston, K.D. & Sauer, M. Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconj. Chem 14, 195–204 (2003).

    CAS  Google Scholar 

  81. Randolph, J.B. & Waggoner, A.S. Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes. Nucleic Acids Res. 25, 2923–2929 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Panchuk-Voloshina, N. et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47, 1179–1188 (1999).

    CAS  PubMed  Google Scholar 

  83. Berlier, J.E. et al. Quantitative comparison of long-wavelength Alexa Fluo dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J. Histochem. Cytochem. 51, 1699–1712 (2003).

    CAS  PubMed  Google Scholar 

  84. Seidel, C.A.M., Schulz, A. & Sauer, M.H.M. Nucleobase-specific quenching of fluorescent dyes: 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J. Phys. Chem. 100, 5541–5553 (1996).

    CAS  Google Scholar 

  85. Ji, X., Copenhaver, D., Sichmeller, C. & Peng, X. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc. 130, 5726–5735 (2008). Striking example for the influence of ligand desorption/adsorption equilibria and surface ligand coverage on the fluorescence properties of QD labels, underlining the need for investigations of the bonding processes of organic ligands to the surface atoms of nanocrystals.

    CAS  PubMed  Google Scholar 

  86. Eggeling, C., Volkmer, A. & Seidel, C.A.M. Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem 6, 791–804 (2005).

    CAS  PubMed  Google Scholar 

  87. Fare, T.L. et al. Effects of atmospheric ozone on microarray data quality. Anal. Chem. 75, 4672–4675 (2003).

    CAS  PubMed  Google Scholar 

  88. Ziegler, J., Merkulov, A., Grabolle, M., Resch-Genger, U. & Nann, T. High quality ZnS shells for CdSe nanoparticles - a rapid, low toxic microwave synthesis. Langmuir 23, 7751–7759 (2007).

    CAS  PubMed  Google Scholar 

  89. Nida, D.L., Nitin, N., Yu, W.W., Colvin, V.L., Richards-Kortum, R. Photostability of quantum dots with amphiphilic polymer-based passivation. Nanotechnology 19, 035701 (2008).

    CAS  PubMed  Google Scholar 

  90. Riegler, J., Nick, P., Kielmann, U. & Nann, T. Visualizing the self-assembly of tubulin with luminescent nanorods. J. Nanosci. Nanotechnol. 3, 380–385 (2003).

    CAS  PubMed  Google Scholar 

  91. Smith, A.M., Dave, S., Nie, S., True, L. & Gao, X. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diagn. 6, 231–244 (2006).

    CAS  PubMed  Google Scholar 

  92. Sukhanova, A. et al. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem. 324, 60–67 (2004).

    CAS  PubMed  Google Scholar 

  93. Zhang, Y. et al. Time-dependent photoluminescence blue shift of the quantum dots in living cells: Effect of oxidation by singlet oxygen. J. Am. Chem. Soc. 128, 13396–13401 (2006).

    CAS  PubMed  Google Scholar 

  94. Parak, W.J. et al. Cell motility and metastic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 14, 882–885 (2002).

    CAS  Google Scholar 

  95. Hoshino, A. et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4, 2163–2169 (2004).

    CAS  Google Scholar 

  96. Boldt, K., Bruns, O.T., Gaponik, N. & Eychmüller, A. Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers. J. Phys. Chem. B 110, 1959–1963 (2006).

    CAS  PubMed  Google Scholar 

  97. Ma, J. et al. Photostability of thiol-capped CdTe quantum dots in living cells: the effect of photooxidation. Nanotechnology 17, 2083–2089 (2006).

    CAS  Google Scholar 

  98. Gomez, D.E., Califano, M. & Mulvaney, P. Optical properties of single semiconductor nanocrystals. Phys. Chem. Chem. Phys. 8, 4989–5011 (2006).

    CAS  PubMed  Google Scholar 

  99. Robelek, R., Stefani, F.D. & Knoll, W. Oligonucleotide hybridization monitored by surface plasmon enhanced fluorescence spectroscopy with bio-conjugated core/shell quantum dots. Influence of luminescence blinking. Phys. Stat. Sol. A 203, 3468–3475 (2006).

    CAS  Google Scholar 

  100. Ebenstein, Y., Mokari, T. & Banin, U. Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl. Phys. Lett. 80, 4033–4035 (2002).

    CAS  Google Scholar 

  101. Lewinski, N., Colvin, V. & Drezek, R. Cytotoxicity of nanoparticles. Small 4, 26–49 (2008). A critical review of the in vitro cytotoxicity data currently available for three classes of nanoparticles including QDs.

    CAS  PubMed  Google Scholar 

  102. Derfus, A.M., Chan, W.C.W. & Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004).

    CAS  PubMed  Google Scholar 

  103. Kirchner, C. et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338 (2005).

    CAS  PubMed  Google Scholar 

  104. Selvan, S.T., Tan, T.T. & Ying, J.Y. Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv. Mater. 17, 1620–1625 (2005).

    CAS  Google Scholar 

  105. Worle-Knirsch, J.M., Pulskamp, K. & Krug, H.F. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 6, 1261–1268 (2006).

    CAS  PubMed  Google Scholar 

  106. Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794–1807 (2006).

    CAS  PubMed  Google Scholar 

  107. Pradhan, N., Battaglia, D.M., Liu, Y. & Peng, X. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett. 7, 312–317 (2007).

    CAS  PubMed  Google Scholar 

  108. Sapsford, K.E., Berti, L. & Medintz, I.L. Materials for fluorescence resonance energy transfer analysis beyond traditional donor-acceptor combinations. Angew. Chem. Int. Edn. 45, 4562–4588 (2006). Excellent review on FRET and its applications.

    CAS  Google Scholar 

  109. Lewis, E.K. et al. Color-blind fluorescence detection for four-color DNA sequencing. Proc. Natl. Acad. Sci. USA 102, 5346–5351 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. De Rosa, S.C., Brenchley, J.M. & Roederer, M. Beyond six colors: a new era in flow cytometry. Nat. Med. 9, 112–117 (2003).

    CAS  PubMed  Google Scholar 

  111. Han, M., Gao, X., Su, J.Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).

    CAS  PubMed  Google Scholar 

  112. Lieberwirth, U. et al. Multiplex dye DNA sequencing in capillary gel electrophoresis by diode laser-based time-resolved fluorescence detection. Anal. Chem. 70, 4771–4779 (1998).

    CAS  PubMed  Google Scholar 

  113. Zhu, L., Stryjweski, W.J. & Soper, S.A. Multiplexed fluorescence detection with microfabricated devices with both tome-resolved and spectral-discrimination capabilities using near-infrared fluorescence. Anal. Biochem. 330, 206–218 (2004).

    CAS  PubMed  Google Scholar 

  114. Tung, C.-H., Bredow, S., Mahmood, U. & Weissleder, R. Preparation of a cathepsin D near-infrared fluorescence probe for imaging. Bioconj. Chem 10, 892–896 (1999).

    CAS  Google Scholar 

  115. Jarvius, J. et al. Digital quantification using amplified single-molecule detection. Nat. Methods 3, 725–727 (2006).

    CAS  PubMed  Google Scholar 

  116. Descalzo, A.B., Martinez-Manez, R., Sancenon, F., Hoffmann, K. & Rurack, K. The supramolecular chemistry of organic-inorganic hybrid materials. Angew. Chem. Int. Edn. 45, 5924–5945 (2006).

    CAS  Google Scholar 

  117. Aslan, K. et al. Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr. Opin. Biotechnol. 16, 55–62 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chan, C.P.-Y. et al. Nanocrystal biolabel with releasable fluorophores for immunoassays. Anal. Chem. 76, 3638–3645 (2004).

    CAS  PubMed  Google Scholar 

  119. Zhang, J., Fu, Y. & Lakowicz, J.R. Emission behavior of fluorescently labeled silver nanoshells: enhanced self-quenching by metal nanostructure. J. Phys. Chem. C 111, 1955–1961 (2007).

    CAS  Google Scholar 

  120. Govorov, A.O. et al. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Lett. 6, 984–994 (2006).

    CAS  Google Scholar 

  121. Wang, S., Jarrett, B.R., Kauzlarich, S.M. & Louie, A.Y. Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J. Am. Chem. Soc. 129, 3848–3856 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Fomenko, V. & Nesbitt, D.J. Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression. Nano Lett. 8, 287–293 (2008).

    CAS  PubMed  Google Scholar 

  123. Lidke, K.A., Rieger, B., Jovin, T.M. & Heintzmann, R. Superresolution by localization of quantum dots using blinking statistics. Opt. Express 13, 7052–7062 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the German Ministry of Education and Research (grant 13N8849). R.N. is supported by the German Research Council Cluster of Excellence 294. We thank M. Seydack, J. Enderlein and M. Weller for carefully reading and critically commenting on the manuscript, DYOMICs GmbH for providing the MegaStokes dyes, F. Koberling and H. Bauer for help with the time-resolved measurements and W. Rettig and K. Rurack for fruitful discussions of dye photophysics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ute Resch-Genger or Thomas Nann.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S. et al. Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5, 763–775 (2008). https://doi.org/10.1038/nmeth.1248

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing