Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor

Abstract

Measurement of population activity with single-action-potential, single-neuron resolution is pivotal for understanding information representation and processing in the brain and how the brain's responses are altered by experience. Genetically encoded indicators of neuronal activity allow long-term, cell type–specific expression. Fluorescent Ca2+ indicator proteins (FCIPs), a main class of reporters of neural activity, initially suffered, in particular, from an inability to report single action potentials in vivo. Although suboptimal Ca2+-binding dynamics and Ca2+-induced fluorescence changes in FCIPs are important factors, low levels of expression also seem to play a role. Here we report that delivering D3cpv, an improved fluorescent resonance energy transfer–based FCIP, using a recombinant adeno-associated virus results in expression sufficient to detect the Ca2+ transients that accompany single action potentials. In upper-layer cortical neurons, we were able to detect transients associated with single action potentials firing at rates of <1 Hz, with high reliability, from in vivo recordings in living mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: D3cpv expression in neurons.
Figure 2: Responses to synaptic stimulation in organotypic slices.
Figure 3: Whole-cell recordings in organotypic slices.
Figure 4: Responses in mouse somatosensory cortex to sensory stimulation.
Figure 5: Simultaneous electrical and optical recording of action potentials in vivo.

Similar content being viewed by others

References

  1. Nicolelis, M.A. & Ribeiro, S. Multielectrode recordings: the next steps. Curr. Opin. Neurobiol. 12, 602–606 (2002).

    Article  CAS  Google Scholar 

  2. Tsien, R.Y. Monitoring cell calcium. in Calcium as a Cellular Regulator (Carafoli, E. & Klee, C., eds.) 28–54 (Oxford University Press, New York, 1999).

    Google Scholar 

  3. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  4. Tank, D.W., Sugimori, M., Connor, J.A. & Llinas, R.R. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242, 773–777 (1988).

    Article  CAS  Google Scholar 

  5. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  Google Scholar 

  6. Kerr, J.N., Greenberg, D. & Helmchen, F. Imaging input and output of neocortical networks in vivo. Proc. Natl. Acad. Sci. USA 102, 14063–14068 (2005).

    Article  CAS  Google Scholar 

  7. Ohki, K., Chung, S., Ch'ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    Article  CAS  Google Scholar 

  8. Kerr, J.N. et al. Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex. J. Neurosci. 27, 13316–13328 (2007).

    Article  CAS  Google Scholar 

  9. Ohki, K. & Reid, R.C. Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17, 401–407 (2007).

    Article  CAS  Google Scholar 

  10. Palmer, A.E. & Tsien, R.Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat. Protocols 1, 1057–1065 (2006).

    Article  CAS  Google Scholar 

  11. Palmer, A.E. et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13, 521–530 (2006).

    Article  CAS  Google Scholar 

  12. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583–594 (2000).

    Article  CAS  Google Scholar 

  13. Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    Article  CAS  Google Scholar 

  14. Higashijima, S., Masino, M.A., Mandel, G. & Fetcho, J.R. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J. Neurophysiol. 90, 3986–3997 (2003).

    Article  Google Scholar 

  15. Hasan, M.T. et al. Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol. 2, e163 (2004).

    Article  Google Scholar 

  16. Heim, N. et al. Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat. Methods 4, 127–129 (2007).

    Article  CAS  Google Scholar 

  17. Klein, R.L. et al. Dose and promoter effects of adeno-associated viral vector for green fluorescent protein expression in the rat brain. Exp. Neurol. 176, 66–74 (2002).

    Article  CAS  Google Scholar 

  18. Schnepp, B.C., Jensen, R.L., Chen, C.L., Johnson, P.R. & Clark, K.R. Characterization of adeno-associated virus genomes isolated from human tissues. J. Virol. 79, 14793–14803 (2005).

    Article  CAS  Google Scholar 

  19. Girod, A. et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat. Med. 5, 1052–1056; erratum 5, 1438 (1999).

    Article  CAS  Google Scholar 

  20. Shevtsova, Z., Malik, J.M., Michel, U., Bahr, M. & Kugler, S. Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp. Physiol. 90, 53–59 (2005).

    Article  CAS  Google Scholar 

  21. Zhu, P. et al. Silencing and un-silencing of tetracycline-controlled genes in neurons. PLoS ONE 2, e533 (2007).

    Article  Google Scholar 

  22. Wirth, D. et al. Road to precision: recombinase-based targeting technologies for genome engineering. Curr. Opin. Biotechnol. 18, 411–419 (2007).

    Article  CAS  Google Scholar 

  23. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  24. Hahn, T.T., Sakmann, B. & Mehta, M.R. Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states. Nat. Neurosci. 9, 1359–1361 (2006).

    Article  CAS  Google Scholar 

  25. Margrie, T.W. et al. Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39, 911–918 (2003).

    Article  CAS  Google Scholar 

  26. Margrie, T.W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498 (2002).

    Article  CAS  Google Scholar 

  27. Lee, A.K., Manns, I.D., Sakmann, B. & Brecht, M. Whole-cell recordings in freely moving rats. Neuron 51, 399–407 (2006).

    Article  CAS  Google Scholar 

  28. de Kock, C.P., Bruno, R.M., Spors, H. & Sakmann, B. Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J. Physiol. (Lond.) 581, 139–154 (2007).

    Article  CAS  Google Scholar 

  29. Greenberg, D.S., Houweling, A.R. & Kerr, J.N. Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat. Neurosci. 11, 749–751 (2008).

    Article  CAS  Google Scholar 

  30. Theer, P., Hasan, M.T. & Denk, W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).

    Article  CAS  Google Scholar 

  31. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    Article  CAS  Google Scholar 

  32. Wickersham, I.R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  Google Scholar 

  33. During, M.J. Adeno-associated virus as a gene delivery system. Adv. Drug Deliv. Rev. 27, 83–94 (1997).

    Article  CAS  Google Scholar 

  34. Kugler, S., Hahnewald, R., Garrido, M. & Reiss, J. Long-term rescue of a lethal inherited disease by adeno-associated virus-mediated gene transfer in a mouse model of molybdenum-cofactor deficiency. Am. J. Hum. Genet. 80, 291–297 (2007).

    Article  CAS  Google Scholar 

  35. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Karpova and W. Mittmann for reading the manuscript and for helpful suggestions, D.S. Greenberg for modifying the automatic detection algorithm, A. Migala for rat hippocampal organotypic slices, I. Wunderlich for help with the virus preparation, J.A. Kleinschmidt (German Cancer Center, Heidelberg) for providing helper plasmids and E. Heil for art work. This work was supported by the Max Planck Society, Collaborative Research Grant (SFB636/A4), the Volkswagen Foundation (AZ: I/80 704) and the Schloessmann Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.E.P. and R.Y.T. provided D3cpv. Experiments and data analysis: S.A., M.T.H. and W.D. (cell-attached and whole-cell experiments in rat hippocampal slices); D.J.W. and J.N.D.K. (targeted in vivo patch recordings); S.M.z.A.B., W.D. and M.T.H. (rat hippocampal slices and in vivo activity responses); R.S. and M.T.H. (construct design); Y.Y. and M.T.H. (molecular biology); S.K., Y.Y. and M.T.H. (virus production); Y.Y., R.S. and M.T.H. (expression analyses); and M.B. and M.T.H. (in vivo injections). M.T.H. led the project; W.D. and M.T.H. wrote the paper.

Corresponding author

Correspondence to Mazahir T Hasan.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Methods (PDF 1103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, D., zum Alten Borgloh, S., Astori, S. et al. Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat Methods 5, 797–804 (2008). https://doi.org/10.1038/nmeth.1242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing