Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional immobilization of signaling proteins enables control of stem cell fate

Abstract

The mode of ligand presentation has a fundamental role in organizing cell fate throughout development. We report a rapid and simple approach for immobilizing signaling ligands to maleic anhydride copolymer thin-film coatings, enabling stable signaling ligand presentation at interfaces at defined concentrations. We demonstrate the utility of this platform technology using leukemia inhibitory factor (LIF) and stem cell factor (SCF). Immobilized LIF supported mouse embryonic stem cell (mESC) pluripotency for at least 2 weeks in the absence of added diffusible LIF. Immobilized LIF activated signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling in a dose-dependent manner. The introduced method allows for the robust investigation of cell fate responses from interface-immobilized ligands.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term stability and ligand accessibility for different LIF immobilization strategies.
Figure 2: Immobilized LIF activates STAT3 and MAPK in a dose-dependent manner.
Figure 3: Immobilized LIF promotes Oct-4 expression and chimera formation in a dose-dependent manner.
Figure 4: Functional immobilization of SCF.

Similar content being viewed by others

References

  1. DeLong, S.A., Moon, J.J. & West, J.L. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26, 3227–3234 (2005).

    Article  CAS  Google Scholar 

  2. Fan, V.H. et al. Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells 25, 1241–1251 (2007).

    Article  CAS  Google Scholar 

  3. Gomez, N., Lu, Y., Chen, S. & Schmidt, C.E. Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture. Biomaterials 28, 271–284 (2007).

    Article  CAS  Google Scholar 

  4. Ichinose, J., Morimatsu, M., Yanagida, T. & Sako, Y. Covalent immobilization of epidermal growth factor molecules for single-molecule imaging analysis of intracellular signaling. Biomaterials 27, 3343–3350 (2006).

    Article  CAS  Google Scholar 

  5. Kapur, T.A. & Shoichet, M.S. Chemically-bound nerve growth factor for neural tissue engineering applications. J. Biomater. Sci. Polym. Ed. 14, 383–394 (2003).

    Article  CAS  Google Scholar 

  6. Biondi, M., Ungaro, F., Quaglia, F. & Netti, P.A. Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 60, 229–242 (2008).

    Article  CAS  Google Scholar 

  7. Tessmar, J.K. & Gopferich, A.M. Matrices and scaffolds for protein delivery in tissue engineering. Adv. Drug Deliv. Rev. 59, 274–291 (2007).

    Article  CAS  Google Scholar 

  8. Backer, M.V., Patel, V., Jehning, B.T., Claffey, K.P. & Backer, J.M. Surface immobilization of active vascular endothelial growth factor via a cysteine-containing tag. Biomaterials 27, 5452–5458 (2006).

    Article  CAS  Google Scholar 

  9. Kuhl, P.R. & Griffith-Cima, L.G. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat. Med. 2, 1022–1027 (1996).

    Article  CAS  Google Scholar 

  10. Pompe, T. et al. Maleic anhydride copolymers–a versatile platform for molecular biosurface engineering. Biomacromolecules 4, 1072–1079 (2003).

    Article  CAS  Google Scholar 

  11. Salchert, K. et al. Immobilization of an anticoagulant benzamidine derivative: effect of spacer arms and carrier hydrophobicity on thrombin binding. Acta Biomater. 1, 441–449 (2005).

    Article  Google Scholar 

  12. Sperling, C., Salchert, K., Streller, U. & Werner, C. Covalently immobilized thrombomodulin inhibits coagulation and complement activation of artificial surfaces in vitro. Biomaterials 25, 5101–5113 (2004).

    Article  CAS  Google Scholar 

  13. Osaki, T. & Werner, C. Ionization characteristics and structural transitions of alternating maleic acid copolymer films. Langmuir 19, 5787–5793 (2003).

    Article  CAS  Google Scholar 

  14. Pompe, T., Renner, L., Grimmer, M., Herold, N. & Werner, C. Functional films of maleic anhydride copolymers under physiological conditions. Macromol. Biosci. 5, 890–895 (2005).

    Article  CAS  Google Scholar 

  15. Makino, H., Hasuda, H. & Ito, Y. Immobilization of leukemia inhibitory factor (LIF) to culture murine embryonic stem cells. J. Biosci. Bioeng. 98, 374–379 (2004).

    Article  CAS  Google Scholar 

  16. Shen, H.R., Spikes, J.D., Kopecekova, P. & Kopecek, J. Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl)methacrylamide copolymers. J. Photochem. Photobiol. B 34, 203–210 (1996).

    Article  CAS  Google Scholar 

  17. Smith, A.G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    Article  CAS  Google Scholar 

  18. Williams, R.L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988).

    Article  CAS  Google Scholar 

  19. Binetruy, B., Heasley, L., Bost, F., Caron, L. & Aouadi, M. Concise review: regulation of embryonic stem cell lineage commitment by mitogen-activated protein kinases. Stem Cells 25, 1090–1095 (2007).

    Article  CAS  Google Scholar 

  20. Boulton, T.G., Stahl, N. & Yancopoulos, G.D. Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors. J. Biol. Chem. 269, 11648–11655 (1994).

    CAS  PubMed  Google Scholar 

  21. Kunath, T. et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 2895–2902 (2007).

    Article  CAS  Google Scholar 

  22. Davey, R.E., Onishi, K., Mahdavi, A. & Zandstra, P.W. LIF-mediated control of embryonic stem cell self-renewal emerges due to an autoregulatory loop. FASEB J. 21, 2020–2032 (2007).

    Article  CAS  Google Scholar 

  23. Rathjen, P.D., Toth, S., Willis, A., Heath, J.K. & Smith, A.G. Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62, 1105–1114 (1990).

    Article  CAS  Google Scholar 

  24. Robertson, M., Chambers, I., Rathjen, P., Nichols, J. & Smith, A. Expression of alternative forms of differentiation inhibiting activity (DIA/LIF) during murine embryogenesis and in neonatal and adult tissues. Dev. Genet. 14, 165–173 (1993).

    Article  CAS  Google Scholar 

  25. Conquet, F., Peyrieras, N., Tiret, L. & Brulet, P. Inhibited gastrulation in mouse embryos overexpressing the leukemia inhibitory factor. Proc. Natl. Acad. Sci. USA 89, 8195–8199 (1992).

    Article  CAS  Google Scholar 

  26. Davey, R.E. & Zandstra, P.W. Spatial organization of embryonic stem cell responsiveness to autocrine gp130 ligands reveals an autoregulatory stem cell niche. Stem Cells 24, 2538–2548 (2006).

    Article  CAS  Google Scholar 

  27. Scholer, H.R., Balling, R., Hatzopoulos, A.K., Suzuki, N. & Gruss, P. Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J. 8, 2551–2557 (1989).

    Article  CAS  Google Scholar 

  28. Davey, R.E. & Zandstra, P.W. Signal processing underlying extrinsic control of stem cell fate. Curr. Opin. Hematol. 11, 95–101 (2004).

    Article  Google Scholar 

  29. Zandstra, P.W., Le, H.V., Daley, G.Q., Griffith, L.G. & Lauffenburger, D.A. Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation. Biotechnol. Bioeng. 69, 607–617 (2000).

    Article  CAS  Google Scholar 

  30. Werner, C., Pompe, T. & Salchert, K. Modulating extracellular matrix at interfaces of polymeric materials. Adv. Polym. Sci. 203, 374–379 (2006).

    Google Scholar 

  31. Prudhomme, W., Daley, G.Q., Zandstra, P. & Lauffenburger, D.A. Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proc. Natl. Acad. Sci. USA 101, 2900–2905 (2004).

    Article  CAS  Google Scholar 

  32. Kitisin, K. et al. Tgf-Beta signaling in development. Sci. STKE 2007, cm1 (2007).

    Article  Google Scholar 

  33. de Pooter, R. & Zuniga-Pflucker, J.C. T-cell potential and development in vitro: the OP9–DL1 approach. Curr. Opin. Immunol. 19, 163–168 (2007).

    Article  CAS  Google Scholar 

  34. Salchert, K. et al. In vitro reconstitution of fibrillar collagen type I assemblies at reactive polymer surfaces. Biomacromolecules 5, 1340–1350 (2004).

    Article  CAS  Google Scholar 

  35. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  Google Scholar 

  36. Pirity, M., Hadjantonakis, A.K. & Nagy, A. Embryonic stem cells, creating transgenic animals. Methods Cell Biol. 57, 279–293 (1998).

    Article  CAS  Google Scholar 

  37. Tanaka, M., Hadjantonakis, A.K. & Nagy, A. Aggregation chimeras. Combining ES cells, diploid and tetraploid embryos. Methods Mol. Biol. 158, 135–154 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Lenk and J. Drichel for technical assistance. P.W.Z. is a Canada Research Chair in Stem Cell Bioengineering. R.E.D. was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) award. K.O. was supported by an Ontario Graduate Scholarship. This work was accomplished with support from NSERC (Discovery and Steacie). F.P.S., M.B. and C.W. were supported by the Deutsche Forschungsgemeinschaft, “Collaborative Research Centre: cells into tissues—stem cell and progenitor commitment and interactions during tissue formation” (SFB 655). C.W. was supported by the Federal Ministry of Science, Education and Technology of Germany (grant 0N4022 Center of Excellence in Biomaterials, Dresden).

Author information

Authors and Affiliations

Authors

Contributions

R.E.D., K.A., K.S., K.O., S.G. and F.P.S. designed and performed experiments and assisted with writing the manuscript. M.B., T.P., P.W.Z., A.N. and C.W. designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Carsten Werner or Peter W Zandstra.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–2, Supplementary Methods (PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberti, K., Davey, R., Onishi, K. et al. Functional immobilization of signaling proteins enables control of stem cell fate. Nat Methods 5, 645–650 (2008). https://doi.org/10.1038/nmeth.1222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing