Review Article | Published:

Do-it-yourself guide: how to use the modern single-molecule toolkit

Nature Methods volume 5, pages 475489 (2008) | Download Citation

Subjects

Abstract

Single-molecule microscopy has evolved into the ultimate-sensitivity toolkit to study systems from small molecules to living cells, with the prospect of revolutionizing the modern biosciences. Here we survey the current state of the art in single-molecule tools including fluorescence spectroscopy, tethered particle microscopy, optical and magnetic tweezers, and atomic force microscopy. We also provide guidelines for choosing the right approach from the available single-molecule toolkit for applications as diverse as structural biology, enzymology, nanotechnology and systems biology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    in Miniaturization (ed., Gilbert, H. D.) 282–296 (Reinhold Publishing Corporation, New York, 1961). Feynman's now-famous deliberations on the “plenty of room at the bottom” inspired several generations of scientists to seek to fill this room with nanometer-scale materials and techniques to study them.

  2. 2.

    , , & Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

  3. 3.

    , & Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986). A demonstration of the concept of atomic force microscopy by the combination of a scanning tunneling microscope and a stylus profilometer that is able to investigate surfaces of insulators on an atomic scale.

  4. 4.

    , & Optical stethoscopy: image recording with resolution lambda/20. Appl. Phys. Lett. 44, 651–653 (1984).

  5. 5.

    & Optical-detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989). Optical absorption spectrum from a single molecule of pentacene in a p-terphenyl crystal at the temperature of liquid helium.

  6. 6.

    & Single pentacene molecules detected by fluorescence excitation in a para-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990). Fluorescence detection of single pentacene molecules in a p-terphenyl crystal at low temperature.

  7. 7.

    A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106, 910–927 (2002).

  8. 8.

    Single-molecule spectroscopy: the road ahead. J. Chem. Phys. 117, 10938–10946 (2002).

  9. 9.

    , , , & Detection of single fluorescent molecules. Chem. Phys. Lett. 174, 553–557 (1990). Single-molecule fluorescence detection in solution at room temperature.

  10. 10.

    , , & Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science 274, 966–969 (1996).

  11. 11.

    , , , & Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995). A refinement of epi-fluorescence and total internal reflection microscopies to achieve video-rate imaging of single molecules in aqueous solution.

  12. 12.

    , & High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct. 36, 171–190 (2007).

  13. 13.

    , , & Focus on function: single molecule RNA enzymology. Biopolymers 87, 302–316 (2007).

  14. 14.

    New directions in single-molecule imaging and analysis. Proc. Natl. Acad. Sci. USA 104, 12596–12602 (2007).

  15. 15.

    et al. Under the microscope: single molecule symposium at the University of Michigan, 2006. Biopolymers 85, 106–114 (2007).

  16. 16.

    & , eds. Single-Molecule Techniques: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2008).

  17. 17.

    , , & Recent advances in optical tweezers. Annu. Rev. Biochem. (in the press) (2008).

  18. 18.

    & Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–405 (2008).

  19. 19.

    , & A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

  20. 20.

    et al. Single-molecule DNA sequencing of a viral genome. Science 320, 106–109 (2008).

  21. 21.

    & Single-molecule spectroscopy and microscopy. Compt. Rend. Phys. 3, 619–644 (2002).

  22. 22.

    & Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619 (2003).

  23. 23.

    Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006).

  24. 24.

    , & Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl. Acad. Sci. USA 101, 12887–12892 (2004).

  25. 25.

    , & Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

  26. 26.

    & Optical sectioning microscopy. Nat. Methods 2, 920–931 (2005).

  27. 27.

    et al. Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. Proc. Natl. Acad. Sci. USA 99, 4284–4289 (2002).

  28. 28.

    Total internal reflection fluorescence microscopy in cell biology. Methods Enzymol. 361, 1–33 (2003).

  29. 29.

    et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

  30. 30.

    et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc. Natl. Acad. Sci. USA 105, 1176–1181 (2008).

  31. 31.

    , & Optical-fiber bundles. FEBS J. 274, 5462–5470 (2007).

  32. 32.

    & Nanofluidic structures for single biomolecule fluorescent detection. Biopolymers 85, 131–143 (2007).

  33. 33.

    & Laminar flow cells for single-molecule studies of DNA-protein interactions. Nat. Methods 5, 517–525 (2008).

  34. 34.

    , , , & Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 95, 1556–1561 (1998).

  35. 35.

    et al. Measuring the folding transition time of single RNA molecules. Biophys. J. 92, 3275–3283 (2007).

  36. 36.

    , & Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

  37. 37.

    et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003). Single fluorophore tracking refined to nanometer resolution in dynamic biological samples.

  38. 38.

    & New fluorescent tools for watching nanometer-scale conformational changes of single molecules. Annu. Rev. Biophys. Biomol. Struct. 36, 349–369 (2007).

  39. 39.

    , & Single-molecule fluorescence to study molecular motors. Q. Rev. Biophys. 40, 87–111 (2007).

  40. 40.

    Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer. Methods 25, 19–30 (2001).

  41. 41.

    & Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J. Chem. Phys. 117, 10953–10964 (2002).

  42. 42.

    , & Surfaces and orientations: much to FRET about? Acc. Chem. Res. 38, 542–548 (2005).

  43. 43.

    et al. Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling. Chem. Biol. 12, 999–1006 (2005).

  44. 44.

    & Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).

  45. 45.

    & Fluorescence correlation spectroscopy for probing the kinetics and mechanisms of DNA hairpin formation. Biopolymers 89, 1–16 (2008).

  46. 46.

    & Using photon statistics to boost microscopy resolution. Proc. Natl. Acad. Sci. USA 103, 4797–4798 (2006).

  47. 47.

    et al. Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys. J. 52, 775–782 (1987).

  48. 48.

    , & Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988). Tracking of nanometer-scale motion in dynamic biological systems by attaching microscopic beads.

  49. 49.

    , , & Transcription by single molecules of RNA polymerase observed by light-microscopy. Nature 352, 444–448 (1991).

  50. 50.

    , , , & Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).

  51. 51.

    , & Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. Proc. Natl. Acad. Sci. USA 103, 4457–4462 (2006).

  52. 52.

    , , , & Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl. Acad. Sci. USA 102, 1419–1423 (2005).

  53. 53.

    , & Single-molecule high-resolution imaging with photobleaching. Proc. Natl. Acad. Sci. USA 101, 6462–6465 (2004).

  54. 54.

    , , & Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl. Acad. Sci. USA 101, 11298–11303 (2004).

  55. 55.

    , & Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

  56. 56.

    et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). Imaging of intracellular proteins at nanometer spatial resolution by stochastic photoswitching.

  57. 57.

    , & Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

  58. 58.

    & Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006).

  59. 59.

    Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970). Optical tweezers implemented as a noninvasive manipulation technique.

  60. 60.

    et al. Mg2+-induced compaction of single RNA molecules monitored by tethered particle microscopy. Biophys. J. 90, 3672–3685 (2006).

  61. 61.

    , , & Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352, 444–448 (1991).

  62. 62.

    & Chi-sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature 409, 370–374 (2001).

  63. 63.

    et al. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301, 1235–1238 (2003).

  64. 64.

    & Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004).

  65. 65.

    , , , & Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat. Methods 4, 223–225 (2007).

  66. 66.

    , & Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy. Methods 29, 175–187 (2003).

  67. 67.

    , , & Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 (1989).

  68. 68.

    & Electrochemical detection of single molecules. Science 267, 871–874 (1995).

  69. 69.

    & STM control of chemical reaction: single-molecule synthesis. Annu. Rev. Phys. Chem. 54, 307–330 (2003).

  70. 70.

    , , , & Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005). The authors show that Ångstrom resolution can be obtained using ultrasensitive optical tweezers to observe single steps of RNA polymerase along a double-stranded DNA template.

  71. 71.

    , , & Tracking topoisomerase activity at the single-molecule level. Annu. Rev. Biophys. Biomol. Struct. 34, 201–219 (2005).

  72. 72.

    , , & Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu. Rev. Biophys. Biomol. Struct. 36, 233–260 (2007).

  73. 73.

    , , , & Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319, 180–183 (2008).

  74. 74.

    et al. The power and prospects of fluorescence microscopies and spectroscopies. Annu. Rev. Biophys. Biomol. Struct. 32, 161–182 (2003).

  75. 75.

    & Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew. Chem. Int. Edn. Engl. 44, 2642–2671 (2005).

  76. 76.

    , & Recent advances in fluorescence correlation spectroscopy. Curr. Opin. Struct. Biol. 12, 634–641 (2002).

  77. 77.

    Quick tour of fluorescence correlation spectroscopy from its inception. J. Biomed. Opt. 9, 857–864 (2004).

  78. 78.

    et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355–358 (2006).

  79. 79.

    , , & Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. EMBO J. 26, 527–537 (2007).

  80. 80.

    , , , & Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).

  81. 81.

    et al. Counting low-copy number proteins in a single cell. Science 315, 81–84 (2007).

  82. 82.

    Single-molecule RNA science. Annu. Rev. Biophys. Biomol. Struct. 34, 399–414 (2005).

  83. 83.

    et al. Secondary structure and secondary structure dynamics of DNA hairpins complexed with HIV-1 NC protein. Biophys. J. 87, 2759–2767 (2004).

  84. 84.

    & Protein structure and dynamics from single-molecule fluorescence resonance energy transfer. J. Phys. Chem. B 109, 1626–1634 (2005).

  85. 85.

    et al. Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003).

  86. 86.

    , , , & Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).

  87. 87.

    , , & Direct observation of the rotation of F-1-ATPase. Nature 386, 299–302 (1997).

  88. 88.

    et al. Correlating structural dynamics and function in single ribozyme molecules. Science 296, 1473–1476 (2002). A detailed study of the hairpin ribozyme reveals profound molecular heterogeneities in single biomolecules that is largely lost in the ensemble average.

  89. 89.

    et al. Single-molecule enzymology of RNA: essential functional groups impact catalysis from a distance. Proc. Natl. Acad. Sci. USA 101, 10066–10071 (2004).

  90. 90.

    et al. Observation of internal cleavage and ligation reactions of a ribozyme. Nat. Struct. Mol. Biol. 11, 1107–1113 (2004).

  91. 91.

    , , & Dissecting the multistep reaction pathway of an RNA enzyme by single-molecule kinetic “fingerprinting”. Proc. Natl. Acad. Sci. USA 104, 12634–12639 (2007).

  92. 92.

    et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006).

  93. 93.

    , , , & Repetitive shuttling of a motor protein on DNA. Nature 437, 1321–1325 (2005).

  94. 94.

    , & Single molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

  95. 95.

    , , , & tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004).

  96. 96.

    et al. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol. 2, 87–94 (2006).

  97. 97.

    , , & Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 104, 12610–12615 (2007).

  98. 98.

    , & Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

  99. 99.

    Measurement of activity of single molecules of beta-D-galactosidase. Proc. Natl. Acad. Sci. USA 47, 1981–1991 (1961).

  100. 100.

    & Differences in the chemical-reactivity of individual molecules of an enzyme. Nature 373, 681–683 (1995).

  101. 101.

    , , & Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proc. Natl. Acad. Sci. USA 102, 17348–17353 (2005).

  102. 102.

    , , & Folding of 8–17 deoxyribozyme studied by three-color alternating-laser excitation of single molecules. J. Am. Chem. Soc. 129, 15526–15534 (2007).

  103. 103.

    , , & Revealing two-state protein-protein interactions of calmodulin by single-molecule spectroscopy. J. Am. Chem. Soc. 128, 10034–10042 (2006).

  104. 104.

    et al. A single-molecule study of RNA catalysis and folding. Science 288, 2048–2051 (2000).

  105. 105.

    et al. Site-specific labeling of the ribosome for single-molecule spectroscopy. Nucleic Acids Res. 33, 182–189 (2005).

  106. 106.

    , & Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 3, 83–89 (2006).

  107. 107.

    et al. Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl. Acad. Sci. USA 101, 7317–7322 (2004).

  108. 108.

    , & Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

  109. 109.

    , & Living cells as test tubes. Science 312, 228–230 (2006).

  110. 110.

    & Single molecule fluorescence control for nanotechnology. J. Nanosci. Nanotechnol. 5, 1990–2000 (2005).

  111. 111.

    , , & Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

  112. 112.

    et al. Resolution of lambda/10 in fluorescence microscopy using fast single molecule photo-switching. Appl. Phys. A 88, 223–226 (2007).

  113. 113.

    et al. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B 88, 161–165 (2007).

  114. 114.

    et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

  115. 115.

    Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

  116. 116.

    et al. Two-color far-field fluorescence nanoscopy. Biophys. J. 92, L67–L69 (2007).

  117. 117.

    , , & STED microscopy with continuous wave beams. Nat. Methods 4, 915–918 (2007).

  118. 118.

    et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).

  119. 119.

    et al. The mechanical stability of ubiquitin is linkage dependent. Nat. Struct. Biol. 10, 674–676 (2003).

  120. 120.

    , & Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

  121. 121.

    & Force of single kinesin molecules measured with optical tweezers. Science 260, 232–234 (1993).

  122. 122.

    , , , & Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251–254 (1995).

  123. 123.

    et al. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

  124. 124.

    et al. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437, 916–919 (2005).

  125. 125.

    et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171 (1998). Combination of single-molecule fluorescence microscopy with optical tweezers.

  126. 126.

    , , , & Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat. Methods 1, 133–139 (2004).

  127. 127.

    , , , & Interlaced optical force-fluorescence measurements for single molecule biophysics. Biophys. J. 91, 1069–1077 (2006).

  128. 128.

    et al. Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the Holliday junction. Science 318, 279–283 (2007).

  129. 129.

    , , & Visualizing single DNA-bound proteins using DNA as a scanning probe. Nat. Methods 4, 1031–1036 (2007).

  130. 130.

    & Holographic optical trapping. Appl. Opt. 45, 880–887 (2006).

  131. 131.

    , , & Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc. Natl. Acad. Sci. USA 96, 13756–13761 (1999).

  132. 132.

    , & Super-resolution by confocal fluorescent microscopy. Optik 60, 391–396 (1982).

  133. 133.

    Near-field scanning optical microscopy, a siren call to biology. Traffic 2, 797–803 (2001).

  134. 134.

    , , & The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553–567 (1999).

  135. 135.

    , & Saturated patterned excitation microscopy - a concept for optical resolution improvement. J. Opt. Soc. Am. 19, 1599–1609 (2002).

  136. 136.

    Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

  137. 137.

    & Breaking the diffraction resolution limit by stimulated-emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994). The authors present the concept of stimulated emission depletion fluorescence microscopy to break Abbe's diffraction limit.

  138. 138.

    , , , & Fast dynamics of supercoiled DNA revealed by single-molecule experiments. Proc. Natl. Acad. Sci. USA 104, 11957–11962 (2007).

  139. 139.

    , , , & An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy. Biopolymers 82, 410–414 (2006).

  140. 140.

    et al. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health grants GM062357, GM081025 and GM037006, and US National Science Foundation Chemical Bonding Center award 0533019.

Author information

Affiliations

  1. Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA.

    • Nils G Walter
    • , Cheng-Yen Huang
    • , Anthony J Manzo
    •  & Mohamed A Sobhy

Authors

  1. Search for Nils G Walter in:

  2. Search for Cheng-Yen Huang in:

  3. Search for Anthony J Manzo in:

  4. Search for Mohamed A Sobhy in:

Corresponding author

Correspondence to Nils G Walter.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmeth.1215

Further reading