Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spherical nanosized focal spot unravels the interior of cells

Abstract

The resolution of any linear imaging system is given by its point spread function (PSF) that quantifies the blur of an object point in the image. The sharper the PSF, the better the resolution is. In standard fluorescence microscopy, however, diffraction dictates a PSF with a cigar-shaped main maximum, called the focal spot, which extends over at least half the wavelength of light (λ = 400–700 nm) in the focal plane and >λ along the optical axis (z). Although concepts have been developed to sharpen the focal spot both laterally and axially, none of them has reached their ultimate goal: a spherical spot that can be arbitrarily downscaled in size. Here we introduce a fluorescence microscope that creates nearly spherical focal spots of 40–45 nm (λ/16) in diameter. Fully relying on focused light, this lens-based fluorescence nanoscope unravels the interior of cells noninvasively, uniquely dissecting their sub-λ–sized organelles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence microscopy setup with isotropic 3D focal spot.
Figure 2: Calculated focal intensity distributions and formation of the STED PSF with respective wavelengths, λ, and 4Pi phases, φ.
Figure 3: Isotropic effective focal spot (PSF) on the nanoscale.
Figure 4: IsoSTED fluorescence microscopy dissects a mitochondrion by focusing light into the interior of a mammalian (Vero) cell; here the distribution of the protein Tom20 is imaged.
Figure 5: Two-color isoSTED imaging of mitochondria in Vero cells.

Similar content being viewed by others

References

  1. Hell, S.W. Double confocal microscope. European patent 0491289 (1992).

  2. Hell, S.W. & Stelzer, E.H.K. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt. Commun. 93, 277–282 (1992).

    Article  Google Scholar 

  3. Egner, A., Jakobs, S. & Hell, S.W. Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA 99, 3370–3375 (2002).

    Article  CAS  Google Scholar 

  4. Gugel, H. et al. Cooperative 4Pi excitation and detection yields 7-fold sharper optical sections in live cell microscopy. Biophys. J. 87, 4146–4152 (2004).

    Article  CAS  Google Scholar 

  5. Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195, 10–16 (1999).

    Article  CAS  Google Scholar 

  6. Hell, S.W. Improvement of lateral resolution in far-field light microscopy using two-photon excitation with offset beams. Opt. Commun. 106, 19–24 (1994).

    Article  Google Scholar 

  7. Hell, S.W. in Topics in Fluorescence Spectroscopy (ed., Lakowicz, J. R.) 361–422 (Plenum Press, New York, 1997).

    Google Scholar 

  8. Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  Google Scholar 

  9. Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Fluorescence microscopy with diffraction resolution limit broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

    Article  CAS  Google Scholar 

  10. Dyba, M. & Hell, S.W. Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88, 163901 (2002).

    Article  Google Scholar 

  11. Hell, S.W. & Kroug, M. Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl. Phys. B 60, 495–497 (1995).

    Article  Google Scholar 

  12. Bretschneider, S., Eggeling, C. & Hell, S.W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98, 218103 (2007).

    Article  Google Scholar 

  13. Hell, S.W., Jakobs, S. & Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A 77, 859–860 (2003).

    Article  CAS  Google Scholar 

  14. Gustafsson, M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

    Article  CAS  Google Scholar 

  15. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  CAS  Google Scholar 

  16. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  17. Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  Google Scholar 

  18. Egner, A. et al. Fluorescence nanoscopy in whole cells by asnychronous localization of photoswitching emitters. Biophys. J. 93, 3285–3290 (2007).

    Article  CAS  Google Scholar 

  19. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  20. Fölling, J. et al. Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem. Int. Ed. 46, 6266–6270 (2007).

    Article  Google Scholar 

  21. Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

    Article  CAS  Google Scholar 

  22. Hell, S.W. Strategy for far-field optical imaging and writing without diffraction limit. Phys. Lett. A 326, 140–145 (2004).

    Article  CAS  Google Scholar 

  23. Hoogenraad, N.J., Ward, L.A. & Ryan, M.T. Import and assembly of proteins into mitochondria of mammalian cells. Biochim. Biophys. Acta 1592, 97–105 (2002).

    Article  CAS  Google Scholar 

  24. Rehling, P., Brandner, K. & Pfanner, N. Mitochondrial import and the twin-pore translocase. Nat. Rev. Mol. Cell Biol. 5, 519–530 (2004).

    Article  CAS  Google Scholar 

  25. Neupert, W. & Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–749 (2007).

    Article  CAS  Google Scholar 

  26. Dempster, A.P., Laird, N.M. & Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39, 1–38 (1977).

    Google Scholar 

  27. Richardson, W.H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972).

    Article  Google Scholar 

  28. Tsurui, H. et al. Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition. J. Histochem. Cytochem. 48, 653–662 (2000).

    Article  CAS  Google Scholar 

  29. Staudt, T., Lang, M., Medda, R., Engelhardt, J. & Hell, S.W. 2,2′-Thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc. Res. Tech. 70, 1–9 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Stoldt for help with cell culture. We acknowledge A. Schönle and J. Keller (Max Planck Institute for Biophysical Chemistry) for providing us with the analysis software (Imspector), the PSF calculation software and for helpful discussions. We also acknowledge helpful discussions with K. Willig and thank J. Jethwa for critically reading the manuscript. This work was supported by grants of the Deutsche Forschungsgemeinschaft (JA 1129/3) to S.J. and (SFB 755) to A.E. and S.W.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Egner or Stefan W Hell.

Supplementary information

Supplementary Text and Figures

Supplementary Note 1 (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R., Wurm, C., Jakobs, S. et al. Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5, 539–544 (2008). https://doi.org/10.1038/nmeth.1214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing