Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A quantitative analysis software tool for mass spectrometry–based proteomics

Abstract

We describe Census, a quantitative software tool compatible with many labeling strategies as well as with label-free analyses, single-stage mass spectrometry (MS1) and tandem mass spectrometry (MS/MS) scans, and high- and low-resolution mass spectrometry data. Census uses robust algorithms to address poor-quality measurements and improve quantitative efficiency, and it can support several input file formats. We tested Census with stable-isotope labeling analyses as well as label-free analyses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic detailing the quantitative analysis capabilities of Census.
Figure 2: Use of high mass accuracy for improved quantification with Census.
Figure 3: Expected and measured relative abundances of technical replicates of a 10-protein mix dataset using Census.

References

  1. Makarov, A. et al. Anal. Chem. 78, 2113–2120 (2006).

    CAS  Article  Google Scholar 

  2. Olsen, J.V. et al. Mol. Cell. Proteomics 4, 2010–2021 (2005).

    CAS  Article  Google Scholar 

  3. Yates, J.R., Cociorva, D., Liao, L. & Zabrouskov, V. Anal. Chem. 78, 493–500 (2006).

    CAS  Article  Google Scholar 

  4. Denison, C. et al. Mol. Cell. Proteomics 4, 246–254 (2005).

    CAS  Article  Google Scholar 

  5. Dieguez-Acuna, F.J. et al. Mol. Cell. Proteomics 4, 1459–1470 (2005).

    CAS  Article  Google Scholar 

  6. Foster, L.J., Hoog, C.L.d. & Mann, M. Proc. Natl. Acad. Sci. 100, 5813–5818 (2003).

    CAS  Article  Google Scholar 

  7. Venable, J.D., Wohlschlegel, J., McClatchy, D.B., Park, S.K. & Yates, J.R. III. Anal. Chem. 79, 3056–3064 (2007).

    CAS  Article  Google Scholar 

  8. Eng, J.K., McCormack, A.L. & Yates, J.R., III . J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    CAS  Article  Google Scholar 

  9. Sadygov, R.G. & Yates, J.R., III . Anal. Chem. 75, 3792–3798 (2003).

    CAS  Article  Google Scholar 

  10. Tabb, D.L., Saraf, A. & Yates, J.R., III . Anal. Chem. 75, 6415–6421 (2003).

    CAS  Article  Google Scholar 

  11. Geer, L.Y. et al. J. Proteome Res. 3, 958–964 (2004).

    CAS  Article  Google Scholar 

  12. Ong, S.E. & Mann, M. Nat. Chem. Biol. 1, 252–262 (2005).

    CAS  Article  Google Scholar 

  13. Domon, B. & Aebersold, R. Science 312, 212–217 (2006).

    CAS  Article  Google Scholar 

  14. MacCoss, M.J., Wu, C.C. & Yates, J.R., III . Anal. Chem. 75, 6912–6921 (2003).

    CAS  Article  Google Scholar 

  15. Venable, J.D., Dong, M.Q., Wohlschlegel, J., Dillin, A. & Yates, J.R. Nat. Methods 1, 39–45 (2004).

    CAS  Article  Google Scholar 

  16. Owens, K.G. Appl. Spectrosc. Rev. 27, 1–49 (1992).

    Article  Google Scholar 

  17. Arnott, D. et al. Mol. Cell. Proteomics 1, 148–156 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Wohlschlegel and D. Cociorva for their comments and discussions about the manuscript, M. MacCoss for his insights and work developing RelEx, S. Agarwalla and D. McMullan for sample preparation. S.K.P. is supported by US National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (UOM/DMID-BAA-03). J.D.V. is supported by a National Research Service Award (NIH) fellowship. T.X. is supported by NIH (DE016267). J.R.Y. is supported by NIH (P41 RR011823, R01 MH067880 and R01 HL079442).

Author information

Authors and Affiliations

Authors

Contributions

S.K.P. developed the algorithm and applications; J.D.V. prepared yeast cell lysates, 10 protein standard mixtures, iTRAQ samples and developed algorithms; T.X. contributed to discussions on algorithms; J.R.Y. led and coordinated the project.

Corresponding author

Correspondence to John R Yates III.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–6, Supplementary Methods (PDF 673 kb)

Supplementary Data

Quantitative analysis results obtained from Census for 1:1 mixture of unlabeled and metabolically 15N labeled yeast standards. (ZIP 145 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, S., Venable, J., Xu, T. et al. A quantitative analysis software tool for mass spectrometry–based proteomics. Nat Methods 5, 319–322 (2008). https://doi.org/10.1038/nmeth.1195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing