Activation of protein splicing with light in yeast

Article metrics

Abstract

Spatiotemporal regulation of protein function is a key feature of living systems; experimental tools that provide such control are of great utility. Here we report a genetically encoded system for controlling a post-translational process, protein splicing, with light. Studies in Saccharomyces cerevisiae demonstrate that fusion of a photodimerization system from Arabidopsis thaliana to an artificially split intein permits rapid activation of protein splicing to yield a new protein product.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The light-activated protein splicing system.
Figure 2: Photodimerization of PhyB and PIF3 triggers the protein splicing reaction.
Figure 3: Photodimerization allows temporal control over protein trans-splicing.

References

  1. 1

    Marriot, G. (ed.) Caged Compounds. Methods in Enzymology, vol. 291 (Academic Press, New York, 1998).

  2. 2

    Lawrence, D.S. Curr. Opin. Chem. Biol. 9, 570–575 (2005).

  3. 3

    Zhang, F., Wang, L.-P., Boyden, E.S. & Deisseroth, K. Nat. Methods 3, 785–792 (2006).

  4. 4

    Schroder-Lang, S. et al. Nat. Methods 4, 39–42 (2007).

  5. 5

    Quail, P.H. Nat. Rev. Mol. Cell Biol. 3, 85–93 (2002).

  6. 6

    Shimizu-Sato, S., Huq, E., Tepperman, J.M. & Quail, P.H. Nat. Biotechnol. 20, 1041–1044 (2002).

  7. 7

    Mootz, H.D. & Muir, T.W. J. Am. Chem. Soc. 124, 9044–9045 (2002).

  8. 8

    Mootz, H.D., Blum, E.S. & Muir Tom, W. Angew. Chem. Int. Ed. 43, 5189–5192 (2004).

  9. 9

    Shi, J. & Muir, T.W. J. Am. Chem. Soc. 127, 6198–6206 (2005).

  10. 10

    Mootz, H.D., Blum, E.S., Tyszkiewicz, A.B. & Muir, T.W. J. Am. Chem. Soc. 125, 10561–10569 (2003).

  11. 11

    Schwartz, E.C., Saez, L., Young, M.W. & Muir, T.W. Nat. Chem. Biol. 3, 50–54 (2007).

  12. 12

    Cardenas, M.E. et al. Clin. Microbiol. Rev. 12, 583–611 (1999).

  13. 13

    Matsushita, T., Mochizuki, N. & Nagatani, A. Nature 424, 571–574 (2003).

  14. 14

    Khanna, R. et al. Plant Cell 16, 3033–3044 (2004).

  15. 15

    Zhu, Y., Tepperman, J.M., Fairchild, C.D. & Quail, P.H. Proc. Natl. Acad. Sci. USA 97, 13419–13424 (2000).

Download references

Acknowledgements

We thank P.H. Quail (University of California, Berkeley) for the gift of plasmids encoding PhyB and PIF3, and for providing the chromophore extraction protocol. We thank M.P. Rout (The Rockefeller University) for providing yeast expression plasmids pYEX-U and pYX242, for plasmid pbs-PrA, and S. cerevisiae strain w303α. This work was supported by US National Institutes of Health (grants EB001991 and GM072015).

Author information

Correspondence to Tom W Muir.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–2, Supplementary Methods (PDF 279 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading