Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation


Targeted ectopic expression of genes in the adult brain is an invaluable approach for studying many biological processes. This can be accomplished by generating transgenic mice or by virally mediated gene transfer, but these methods are costly and labor intensive. We devised a rapid strategy that allows localized in vivo transfection of plasmid DNA within the adult neurogenic niches without detectable brain damage. Injection of plasmid DNA into the ventricular system or directly into the hippocampus of adult mice, followed by application of electrical current via external electrodes, resulted in transfection of neural stem or progenitor cells and mature neurons. We showed that this strategy can be used for both fate mapping and gain- or loss-of-function experiments. Using this approach, we identified an essential role for cadherins in maintaining the integrity of the lateral ventricle wall. Thus, in vivo electroporation provides a new approach to study the adult brain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene transfer to the adult brain without detectable damage by electroporation.
Figure 2: Cell types targeted by electroporation in the lateral ventricle wall.
Figure 3: Electroporation targets cells with neural stem cell properties.
Figure 4: Targeting the hippocampal neurogenic niche by electroporation.
Figure 5: Adult brain electroporation allows gain- and loss-of-function experiments.
Figure 6: Cadherins are essential for the integrity of the adult lateral ventricle wall.


  1. Carlen, M., Meletis, K., Barnabe-Heider, F. & Frisen, J. Genetic visualization of neurogenesis. Exp. Cell Res. 312, 2851–2859 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Consiglio, A. et al. Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc. Natl. Acad. Sci. USA 101, 14835–14840 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Tashiro, A., Zhao, C. & Gage, F.H. Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo. Nat. Protoc. 1, 3049–3055 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Glover, D.J., Lipps, H.J. & Jans, D.A. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 6, 299–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Lu, P.Y., Xie, F. & Woodle, M.C. In vivo application of RNA interference: from functional genomics to therapeutics. Adv. Genet. 54, 117–142 (2005).

    CAS  PubMed  Google Scholar 

  6. Falk, A. et al. Gene delivery to adult neural stem cells. Exp. Cell Res. 279, 34–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Mir, L.M., Moller, P.H., Andre, F. & Gehl, J. Electric pulse-mediated gene delivery to various animal tissues. Adv. Genet. 54, 83–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Calegari, F., Haubensak, W., Yang, D., Huttner, W.B. & Buchholz, F. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc. Natl. Acad. Sci. USA 99, 14236–14240 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Inoue, T. & Krumlauf, R. An impulse to the brain–using in vivo electroporation. Nat. Neurosci. 4 (Suppl.), 1156–1158 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Bajocchi, G., Feldman, S.H., Crystal, R.G. & Mastrangeli, A. Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nat. Genet. 3, 229–234 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Johansson, C.B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Falk, A. & Frisen, J. New neurons in old brains. Ann. Med. 37, 480–486 (2005).

    Article  PubMed  Google Scholar 

  13. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C.G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Kempermann, G., Jessberger, S., Steiner, B. & Kronenberg, G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27, 447–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Benraiss, A., Chmielnicki, E., Lerner, K., Roh, D. & Goldman, S.A. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci. 21, 6718–6731 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Pencea, V., Bingaman, K.D., Wiegand, S.J. & Luskin, M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 21, 6706–6717 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Reyes, A. Stem cells, niches and cadherins: a view from Drosophila. J. Cell Sci. 116, 949–954 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Nieman, M.T., Kim, J.B., Johnson, K.R. & Wheelock, M.J. Mechanism of extracellular domain-deleted dominant negative cadherins. J. Cell Sci. 112, 1621–1632 (1999).

    CAS  PubMed  Google Scholar 

  22. Matsuda, T. & Cepko, C.L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl. Acad. Sci. USA 104, 1027–1032 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Lindvall, O. & Kokaia, Z. Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Kondoh, T. et al. In vivo gene transfer into the periventricular region by electroporation. Neurol. Med. Chir. (Tokyo) 40, 618–623 (2000).

    Article  CAS  Google Scholar 

  25. Wei, F. et al. Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. J. Neurosci. 23, 8402–8409 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Kuo, C.T. et al. Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 127, 1253–1264 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Rasin, M.R. et al. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat. Neurosci. 10, 819–827 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Wong, L.F. et al. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum. Gene Ther. 17, 1–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Bengzon, J., Mohapel, P., Ekdahl, C.T. & Lindvall, O. Neuronal apoptosis after brief and prolonged seizures. Prog. Brain Res. 135, 111–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Hatakeyama, J. et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references


We thank R. Kageyama (Kyoto University) for the gift of the nestin promoter vector30, C. Ibáñez (Karolinska Institutet) for the gift of a BDNF expression plasmid, M. Wheelock (University of Nebraska Medical Center) for providing the dominant-negative N-cadherin cDNA and K. Fernandes (University of Montreal) for critically reading the manuscript. This study was supported by grants from the Swedish Research Council, the Swedish Cancer Society, the Foundation for Strategic Research, the Karolinska Institutet, Tobias Stiftelsen and the European Commission Framework VI Programme, EuroStemCell. F.B.-H. is supported by a postdoctoral fellowship from Canadian Institutes of Health Research.

Author information

Authors and Affiliations



F.B.-H. designed, performed and analyzed the study and wrote the manuscript; K.M. designed and performed most parts of the study; M.E. performed and analyzed part of the study (including BAC analysis); O.B. performed part of the study; H.S. performed and analyzed part of the study; M.A.H. performed EEG analysis; H.M. designed and performed part of the adenoviral study; and J.F. designed the study and wrote the manuscript.

Corresponding author

Correspondence to Jonas Frisén.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Methods (PDF 435 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barnabé-Heider, F., Meletis, K., Eriksson, M. et al. Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nat Methods 5, 189–196 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing