Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interfacial heat flow in carbon nanotube suspensions

Abstract

The enormous amount of basic research into carbon nanotubes has sparked interest in the potential applications of these novel materials. One promising use of carbon nanotubes is as fillers in a composite material to improve mechanical behaviour1,2, electrical transport3,4 and thermal transport5,6. For composite materials with high thermal conductivity, the thermal conductance across the nanotube–matrix interface is of particular interest. Here we use picosecond transient absorption to measure the interface thermal conductance (G) of carbon nanotubes suspended in surfactant micelles in water. Classical molecular dynamics simulations of heat transfer from a carbon nanotube to a model hydrocarbon liquid are in agreement with experiment. Our findings indicate that heat transport in a nanotube composite material will be limited by the exceptionally small interface thermal conductance (G ≈ 12 MW m−2 K−1) and that the thermal conductivity of the composite will be much lower than the value estimated from the intrinsic thermal conductivity of the nanotubes and their volume fraction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Transient changes in optical absorption.
Figure 2: Absorption by carbon nanotube suspensions.
Figure 3: Temperature difference between the nanotubes and surrounding liquid.
Figure 4: Spectral temperature of nanotube bending modes as a function of mode frequency.

References

  1. 1

    Ajayan, P.M., Schadler, L.S., Giannaris, C. & Rubio, A. Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv. Mater. 12, 750–753 (2000).

    Article  Google Scholar 

  2. 2

    Allaoui, A., Bai, S., Cheng, H.M. & Bai, J.B. Mechanical and electrical properties of a MWNT/epoxy composite. Composites Sci.Technol. 62, 1993–1998 (2002).

    Article  Google Scholar 

  3. 3

    Kilbride, B.E. et al. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer–carbon nanotube composite thin films. J. Appl. Phys. 92, 4024–4030 (2002).

    Article  Google Scholar 

  4. 4

    Benoit, J.-M., Corraze, B., Lefrant, S., Bernier, P. & Chauvet, O. Electric transport properties and percolation in carbon nanotubes/PMMA composites. Mater. Res. Soc. Symp. Proc. 706, Z3.28.1–Z3.28.5 (2002).

    Google Scholar 

  5. 5

    Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E. & Grulke, E.A. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001).

    Article  Google Scholar 

  6. 6

    Biercuk, M.J. et al. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80, 2767–2769 (2002).

    Article  Google Scholar 

  7. 7

    Kim, P., Shi, L., Majumdar, A. & McEuen, P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502-1–215502-4 (2001).

    Google Scholar 

  8. 8

    Berber, S., Kwon, Y.-K. & Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000).

    Article  Google Scholar 

  9. 9

    Nan, C.W., Birringer, R., Clarke, D.R. & Gleiter, H. Effective thermal conductivity of particulate composite with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997).

    Article  Google Scholar 

  10. 10

    Swartz, E.T. & Pohl, R.O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Article  Google Scholar 

  11. 11

    Cahill, D.G., Goodson, K. & Majumdar, A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transfer 124, 223–241 (2002).

    Article  Google Scholar 

  12. 12

    Costescu, R.M., Wall, M.A. & Cahill, D.G. Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 54302-1–54302-5 (2003).

    Article  Google Scholar 

  13. 13

    O'Hara, K.E., Hu, X. & Cahill, D.G. Characterization of nanostructured metal films by picosecond acoustics and interferometry. J. Appl. Phys. 90, 4852–4858 (2001).

    Article  Google Scholar 

  14. 14

    Wilson, O.M., Hu, X., Cahill, D.G. & Braun, P.V. Colloidal metal particles as probes of nanoscale thermal transport in fluids. Phys. Rev. B 66, 224301-1–224301-6 (2002).

    Article  Google Scholar 

  15. 15

    Bachilo, S.M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  Google Scholar 

  16. 16

    Strano, M.S. Assignment of (n,m) Raman and optical features of metallic single walled carbon nanotubes. Nano Lett. (in the press).

  17. 17

    Lauret, J.S. et al. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 90, 057404-1–05704-4 (2003).

    Article  Google Scholar 

  18. 18

    O'Connell, M.J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  Google Scholar 

  19. 19

    Touloukian, Y.S. Thermophysical Properties of Matter (IFI/Plenum, New York, 1979).

    Google Scholar 

  20. 20

    Strano, M.S. et al. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotech. 3, 81–86 (2003).

    Article  Google Scholar 

  21. 21

    Strano, M.S. et al. Reversible, band-gap selective protonation of single walled carbon nanotubes in solution. J. Phys. Chem. (in the press).

  22. 22

    Richard, C., Balavoine, F., Schultz, P., Ebbesen, T.W. & Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778 (2003).

    Article  Google Scholar 

  23. 23

    Hone, J., Batlogg, B., Benes, Z., Johnson, A.T. & Fischer, J.E. Quantized phonon spectrum of single-wall carbon nanotubes. Science 289, 1730–1733 (2000).

    Article  Google Scholar 

  24. 24

    Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A. & Smalley, R.E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vacuum Sci. Technol. A 19, 1800–1805 (2001).

    Article  Google Scholar 

  25. 25

    Discover®, Forcefield Simulation User Guide (Molecular Simulations Inc., San Diego, 1996).

  26. 26

    Sun, H., Mumby, S.J., Maple, J.R. & Hagler, A.T. An ab initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 116, 2978–2987 (1994).

    Article  Google Scholar 

  27. 27

    CRC Handbook of Chemistry and Physics (Chemical Rubber Publishing, Boca Raton, 1985–1986).

Download references

Acknowledgements

This work was supported by DOE Grant No. DEFG02-01ER45938 and NSF Grant No. CTS 99-78822. Sample characterization used the facilities of the Center for Microanalysis of Materials, which is partly supported by the US Dept of Energy under Grant No. DEFG02-91-ER45439. This work was also supported by the Petroleum Research Fund, Grant No. PRF36305-G9, NSF Grant No. DMR 134725, and a grant from Phillip Morris, USA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pawel Keblinski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huxtable, S., Cahill, D., Shenogin, S. et al. Interfacial heat flow in carbon nanotube suspensions. Nature Mater 2, 731–734 (2003). https://doi.org/10.1038/nmat996

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing