Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular biomimetics: nanotechnology through biology

Abstract

Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of biologically synthesized complex materials.
Figure 2: Molecular biomimetics.
Figure 3: Phage display and cell-surface display.
Figure 4: A gold-binding protein (3-repeat GBP1) on Au(111) and Au(112) surfaces.
Figure 5: Effect of GEPI on nanocrystal morphology.
Figure 6: The potential of using GEPI as 'molecular erector' sets.

Similar content being viewed by others

References

  1. Thompson, D.W. On the Growth and Form (Cambridge Univ. Press, Cambridge, UK, 1942).

    Google Scholar 

  2. Stevens, P.S. Patterns in Nature (Atlantic Monthly, Boston, 1974).

    Google Scholar 

  3. Wainwright, S.A., Biggs, W.D., Currey, J.D. & Gosline, J.M. (eds) Mechanical Design in Organisms (Princeton Univ. Press, Princeton, 1976).

    Google Scholar 

  4. Vogel, S. Cats' Paws and Catapults (W.W. Norton & Company, New York, 1998).

    Google Scholar 

  5. Mann, S. & Calvert, P. Synthesis and biological composites formed by in-situ precipitation. J. Mater. Sci. 23, 3801–3815 (1988).

    Google Scholar 

  6. Sarikaya, M. & Aksay, I.A. (eds.) Biomimetics: Design & Processing of Materials (American Institute of Physics, New York, 1995).

    Google Scholar 

  7. Mann, S. (ed.) Biomimetic Materials Chemistry (VCH, New York, 1996).

    Google Scholar 

  8. Niemeyer, C.M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Edn Engl. 40, 4128–4158 (2001).

    CAS  Google Scholar 

  9. Drexler, K.E. Nanosystems (Wiley Interscience, New York, 1992).

    Google Scholar 

  10. Ryu, D.D.Y. & Nam, D.H. Recent progress in biomolecular engineering. Biotechnol. Prog. 16, 2–16 (2000).

    CAS  Google Scholar 

  11. Sarikaya, M. Biomimetics: Materials fabrication through biology. Proc. Natl Acad. Sci. USA 96, 14183–14185 (1999).

    CAS  Google Scholar 

  12. Seeman, N.C. & Belcher, A.M. Emulating biology: building nanostructures from the bottom up. Proc. Natl Acad. Sci. USA 99, 6452–6455 (2002).

    Google Scholar 

  13. Ball, P. Life's lessons in design. Nature 409, 413–416 (2001).

    CAS  Google Scholar 

  14. Ferry, D.K. & Goodnick, S.M. Transport in Nanostructures (Cambridge Univ. Press, Cambridge, UK, 1997).

    Google Scholar 

  15. Harris, P.J. Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge, UK, 1999).

    Google Scholar 

  16. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotubes transistors. Science 294, 1317–1320 (2001).

    CAS  Google Scholar 

  17. Gittins, D.I., Bethell, D., Schiffrin, D.J. & Michols, R.J. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408, 67–69 (2000).

    CAS  Google Scholar 

  18. Muller, B. Natural formation of nanostructures: from fundamentals in metal heteroepitaxy to applications in optics and biomaterials science. Surf. Rev. Lett. 8, 169–228 (2001).

    CAS  Google Scholar 

  19. Kaplan, D., Adams, W.W., Farmer, B. & Viney, C. Silk-biology, structure, properties, and genetics. Silk Polymers ACS Symposium Series 544, 2–16 (1994).

    Google Scholar 

  20. Lowenstam, H.A. & Weiner, S. On Biomineralization (Oxford Univ. Press, Oxford, UK, 1989).

    Google Scholar 

  21. Mayer, G. & Sarikaya, M. Rigid biological composite materials: Structural examples for biomimetic design. Exp. Mech. 42, 395–403 (2002).

    CAS  Google Scholar 

  22. Fong, H., Sarikaya, M., White, S. & Snead, M.L. Nanomechanical properties profiles across DEJ in human incisor teeth. J. Mater. Sci. Eng C 7, 119–128 (2000).

    Google Scholar 

  23. Sarikaya, M. et al. Biomimetic model of a sponge-spicular optical fiber - mechanical properties and structure. J. Mater. Res. 16, 1420–1428 (2001).

    CAS  Google Scholar 

  24. DeGarmo, E.P., Black, J.T. & Kohner, R.A. Materials and Processes in Manufacturing (McMillan, New York, 1988).

    Google Scholar 

  25. Sarikaya, M., Steinberg, B. & Thomas, G. Optimization of Fe/Cr/C base structural steels for improved strength and toughness. Metall. Trans. A 13, 2227–2237 (1982).

    CAS  Google Scholar 

  26. Ponting, C.P. & Russell, R.R. The natural history of protein domains. Ann. Rev. Biophys. Biomol. 31, 45–71 (2002).

    CAS  Google Scholar 

  27. Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y. & Schulten, K. Molecular dynamics study of unbinding of avidin-biotin complex. Biophys. J. 72, 1568–1581 (1997).

    CAS  Google Scholar 

  28. Schonbrun, J., Wedemeyer, W.J. & Baker, D. Protein structure prediction in 2002. Curr. Opin. Struct. Biol. 12, 348–354 (2002).

    CAS  Google Scholar 

  29. Brown, S. Metal recognition by repeating polypeptides. Nature Biotechnol. 15, 269–272 (1997).

    CAS  Google Scholar 

  30. Schneider, G. & Wrede, P. Artificial neural networks for computer-based molecular design. Biophys. Mol. Biol. 70, 175–222 (1998).

    CAS  Google Scholar 

  31. Cariolou, M.A. & Morse, D.E. Purification and characterization of calcium-binding conchiolin shell peptides from the mollusk, Haliotis-rufescens, as a function of development. J. Comp. Physiol. B 157, 717–729 (1988).

    CAS  Google Scholar 

  32. Glimcher, M. & Nimni, M. Collagen cross-linking and biomineralization. Connect Tissue Res. 27, 73–83 (1992).

    Google Scholar 

  33. Paine, M.L. & Snead, M.L. Protein interactions during assembly of the enamel organic extracellular matrix. J. Bone Mineral. Res. 12, 221–226 (1996).

    Google Scholar 

  34. Kroger, N., Deutzman, R. & Sumper, M. Polycatyonic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 1129–1132 (1999).

    CAS  Google Scholar 

  35. Liou, Y.C., Tocilj, A., Davies, P.L. & Jia, Z.C. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature 406, 322–324 (2000).

    CAS  Google Scholar 

  36. Berman, A., Addadi, L. & Weiner, S. Interactions of sea-urchin skeleton macromolecules with growing calcite crystals: A study of intracrystalline proteins. Nature 331, 546–548 (1988).

    CAS  Google Scholar 

  37. Weizbicki, A., Sikes, C.S., Madura, J.D. & Drake, B. Atomic force microscopy and molecular modeling of proteins and peptide binding to calcite. Calcif. Tissue. Int. 54, 133–141 (1994).

    Google Scholar 

  38. Cha, J.N. et al. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl Acad. Sci. USA 96, 361–365 (1999).

    CAS  Google Scholar 

  39. Belcher, A.M. et al. Control of crystal phase switching and orientation by soluble mollusk-shell proteins. Nature 381, 56–58 (1996).

    CAS  Google Scholar 

  40. Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite and calcite polmorphism by mollusk shell macromolecules. Science 271, 67–69 (1996).

    Google Scholar 

  41. Giver, L. & Arnold, F.H. Combinatorial protein design by in vitro recombination. Curr. Opin. Chem. Biol. 2, 335–338 (1998).

    CAS  Google Scholar 

  42. Schembri, M.A., Kjergaard, K. & Klemm, P. Bioaccumulation of heavy metals by fimbrial designer adhesion. FEMS Microbiol. Lett. 170, 363–371 (1999).

    CAS  Google Scholar 

  43. Brown, S., Sarikaya, M. & Johnson, E. Genetic analysis of crystal growth. J. Mol. Biol. 299, 725–732 (2000).

    CAS  Google Scholar 

  44. Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. & Belcher, M.A. Selection of peptides with semiconducting binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    CAS  Google Scholar 

  45. Naik, R.R., Brott, L., Carlson, S.J. & Stone, M.O. Silica precipitating peptides isolated from a combinatorial phage display libraries. J. Nanosci. Nanotechnol. 2, 1–6 (2002).

    Google Scholar 

  46. Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    CAS  Google Scholar 

  47. Hoess, R.H. Protein design and phage display. Chem. Rev. 101, 3205–3218 (2001).

    CAS  Google Scholar 

  48. Wittrup, K.D. Protein engineering by cell surface display. Curr. Opin. Biotechnol. 12, 395–399 (2001).

    CAS  Google Scholar 

  49. Rosander, A., Bjerketorp, J., Frykberg, L. & Jacobsson, K. Phage display as a novel screening method to identify extracellular proteins. J. Microbiol. Meth. 51, 43–55 (2002).

    CAS  Google Scholar 

  50. Petrouna, I.P. & Arnold, F.H. Designed evolution of enzymatic properties. Curr. Opin. Biotechnol. 11, 325–329 (2000).

    Google Scholar 

  51. Smith, G.P. & Petrenko, A. Phage display. Chem. Rev. 97, 391–410 (1997).

    CAS  Google Scholar 

  52. Benhar, I. Biotechnology applications of phage and cell surface display. Biotechnol. Adv. 19, 1–33 (2001).

    CAS  Google Scholar 

  53. Amstatz, P., Forrer, P., Zahnd, C. & Plückthun, A. In vitro display technologies: novel developments and applications. Curr. Opinion Biotechnol. 12, 400–405 (2001).

    Google Scholar 

  54. Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E. & Stone, M.O. Biomimetic synthesis and patterning of silver nanoparticles. Nature Mater. 1, 169–172 (2002).

    CAS  Google Scholar 

  55. Lee, W.S., Mao, C., Flynn, C.E. & Belcher, A.M. Ordering quantum dots using genetically engineered viruses. Science 296, 892–895 (2002).

    CAS  Google Scholar 

  56. Kiargaard, K., Sorensen, J.K., Schembri, M.A. & Klemm, P. Sequestration of zinc oxide by fimbrial designer chelators. Appl. Env. Microbiol. 66, 10–14 (2000).

    Google Scholar 

  57. Nygaard, S., Wandelbo, R. & Brown, S. Surface-specific zeolite-binding proteins. Adv. Mater. 14, 1853–1856 (2002).

    CAS  Google Scholar 

  58. Gaskin, D.J.H., Starck, K. & Vulfson, E.N. Identification of inorganic crystal-specific seqeunces using phage display combinatorial library of short peptides: A feasibility study. Biotech. Lett. 22, 1211–1216 (2000).

    CAS  Google Scholar 

  59. Scembri, M.A., Kjaergaard, K. & Klemm, P. Bioaccumulation of heavy metals by fimbrial designer adhesions. FEMS Microbial. Lett. 170, 363–371 (1999).

    Google Scholar 

  60. Brown, S. Engineering iron oxide-adhesion mutants of Escherichia coli phage λ receptor. Proc. Natl Acad. Sci. USA 89, 8651–8655 (1992).

    CAS  Google Scholar 

  61. Mann, S. Molecular recognition in biomineralization. Nature 332, 119–123 (1988).

    CAS  Google Scholar 

  62. Weissbuch, I., Addadi, L., Lahav, M. & Leiserowitz, L. Molecular recognition at crystal interfaces. Science 253, 637–645 (1991).

    CAS  Google Scholar 

  63. Sarikaya, M., Fong, H., Heidel, D. & Humbert, R. Biomimetic assembly of nanostructured materials. Mater. Sci. Forum 293, 83–87 (1999).

    CAS  Google Scholar 

  64. Slocik, J.M., Moore, J.T. & Wright, D.W. Monoclonal antibody recognition of histidine-rich peptide capsulated nanoclusters. Nano Lett. 2, 169–173 (2002).

    CAS  Google Scholar 

  65. Braun, R., Sarikaya, M. & Schulten, K.S. Genetically engineered gold-binding polypeptides: Structure prediction and molecular dynamics. J. Biomater. Sci. 13, 747–758 (2002).

    CAS  Google Scholar 

  66. Frankel, R.B. & Blakemore, R.P. (eds) Iron Biominerals (Plenum, New York, 1991).

    Google Scholar 

  67. Klaus,T., Joerger, R., Olsson, E. & Granqvist,C.-G. Silver-based crystalline nanoparticles bacterially fabricated. Proc. Natl Acad. Sci. USA 96, 13611–13614 (1999).

    CAS  Google Scholar 

  68. Mukharjee, P. et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem. Biol. Chem. 5, 461–463 (2002).

    Google Scholar 

  69. Turkevich, J., Stevenson, P.C. & Hillier, J. A study of the nucleation and growth of processes in the synthesis of colloidal gold. Trans. Faraday Soc. 11, 55–75 (1951).

    Google Scholar 

  70. Kempa, K. et al. Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett. 3, 13–18 (2003).

    CAS  Google Scholar 

  71. Beverly, K.C. Quantum dot artificial solids: Understanding the static and dynamic role of size and packing disorder. Proc. Natl Acad. Sci. USA 99, 6456–6459 (2002).

    CAS  Google Scholar 

  72. Djulali, R., Chen, Y. & Matsui, H. Au nanowires from sequenced histidine-rich peptide. J. Am. Chem. Soc. 124, 13660–13661 (2002).

    Google Scholar 

  73. Xia, Y. & Sun, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Google Scholar 

  74. Schreiber, R. Structure and growth of self-assembled monolayers. Prog. Surf. Sci. 65, 151–256 (2000).

    CAS  Google Scholar 

  75. Whitesides, G.M., Mathias, J.P. & Seto, C.T. Molecular Self-assembly and nanochemistry-A chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    CAS  Google Scholar 

  76. Brown, S. Protein-mediated particle assembly. Nano Lett. 1, 391–394 (2001).

    CAS  Google Scholar 

  77. Piner, R.D., Zhu, J., Xu, F., Seunghun, H. & Mirkin, C.A. 'Dip-pen' nanolithography. Science 283, 661–663 (1999).

    CAS  Google Scholar 

  78. Ratner, B., Schoen, F., Hoffman, A. & Lemons, J. (eds) Biomaterials Science: Introduction to Materials in Medicine (Academic, San Diego, USA, 1996).

    Google Scholar 

  79. Mrksich, M. What can surface chemistry do for cell biology. Curr. Opin. Chem. Biol. 6, 794–797 (2002).

    CAS  Google Scholar 

  80. Chen, X.X., Ferrigno, R., Yang, J. & Whitesides, G.A. Redox properties of cytochrome c adsorbed on self-assembled monolayers: A probe for protein conformation and orientation. Langmuir 18, 7009–7015 (2002).

    CAS  Google Scholar 

  81. Jung, L.S., Campbell, C.T., Chinowsky, T.M., Mar, M.N. & Yee, S.S. Quantitative interpretation of the resonance of surface plasmon resonance sensors to adsorbed films. Langmuir 14, 5636–5648 (1998).

    CAS  Google Scholar 

  82. Long, J.R., Shaw, W.J., Stayton, P.S. & Drobny, G.P. Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR. Biochemistry-US 40, 15451–15455 (2001).

    CAS  Google Scholar 

  83. Epstein, J.R., Biran, I. & Walt, D.R. Fluorescence based nucleic acid detection and microarrays. Anal. Chim Acta. 469, 3–36 (2002).

    CAS  Google Scholar 

  84. Chicurel, M.E., & Dalma-Weiszhausz, D.D. Microarrays in pharmagenomics – advances and future promise. Pharmacogenomics 3, 589–601 (2002).

    CAS  Google Scholar 

  85. Yarmush, M.L. & Yarayam, A. Advances in proteomics technologies. Annu. Rev. Biomed. Eng. 4, 349–373 (2002).

    CAS  Google Scholar 

  86. Koneracka, M. et al. Direct binding procedures of proteins to fine magnetic particles. J. Mol. Catal. B 18, 13–18 (2002).

    CAS  Google Scholar 

  87. Asefa, T., Ozin, G.A., Grondey, H., Kruk, H. & Jaroniek, M. Recent developments in the synthesis and chemistry of periodic mesoporous organosilicas. Stud. Surf. Sci Catal. 141, 1–26 (2002).

    CAS  Google Scholar 

  88. Evans, E., Bowman, H., Leung, A., Needham, D. & Tirrell, D. Biomembrane templates for nanoscale conduits and networks. Science 273, 933–935 (1996).

    CAS  Google Scholar 

  89. Hartgerink, J.D., Beniash, E. & Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  Google Scholar 

  90. Keren, K. et al. Sequence specific molecular lithography on single DNA molecules. Science 97, 72–75 (2002).

    Google Scholar 

  91. Moll, D. et al. S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc. Natl Acad. Sci. USA 99, 14646–14651 (2002).

    CAS  Google Scholar 

  92. McMillan, A.R. et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Mater. 1, 247–252 (2002).

    CAS  Google Scholar 

  93. Kelly, T.R. & Sestelo, J.P. Rotary motion in single-molecule machines. Struct. Bond. 99, 19–53 (2001).

    CAS  Google Scholar 

  94. Ishli, D. et al. Chaperorin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423, 628–231 (2003).

    Google Scholar 

  95. Jackson, J.B., Westcott, S.L., Hirsch, L.R., West, J.L. & Halas, N.J. Controlling the surface enhanced RAMAN effect via the nanoshell geometry. Appl. Phys. Lett. 82, 257–259 (2002).

    Google Scholar 

  96. Haes, A.J. & Van Duyne, R.P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596–10604 (2002).

    CAS  Google Scholar 

  97. Cutler, P. Protein Arrays: The current state-of-the-art. Proteomics 3, 3–18 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues S. Brown (University of Copenhagen, Denmark), D. Schwartz, F. Ohuchi and B. Traxler for invaluable discussions, and S. Dincer, D. Heidel, R. Braun (Beckman Institute, University of Illinois), M. H. Zareie, V. Bulmus and H. Fong (all at University of Washington) for technical help. This research was supported by the US Army Research Office (Program Manager: Robert Campbell) through a DURINT Program (Defense University Research Initiative on Nanotechnology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Sarikaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarikaya, M., Tamerler, C., Jen, AY. et al. Molecular biomimetics: nanotechnology through biology. Nature Mater 2, 577–585 (2003). https://doi.org/10.1038/nmat964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat964

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing