Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The rheology of collapsing zeolites amorphized by temperature and pressure

Abstract

Low-density zeolites collapse to the rigid amorphous state at temperatures that are well below the melting points of crystals of the same composition but of conventional density. Here we show, by using a range of experimental techniques, how the phenomenon of amorphization is time dependent, and how the dynamics of order–disorder transitions in zeolites under temperature and pressure are equivalent. As a result, thermobaric regions of instability can be charted, which are indicative of polyamorphism. Moreover, the boundaries of these zones depend on the rate at which temperature or pressure is ramped. By directly comparing the rheology of collapse with structural relaxation in equivalent melts, we conclude that zeolites amorphize like very strong liquids and, if compression occurs slowly, this is likely to lead to the synthesis of perfect glasses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrographs following the changing morphology of zeolite collapse; 300-nm bars relate the different magnifications.
Figure 2: Measuring the time dependence of temperature-induced zeolite collapse by using XRD, DSC and SAXS.
Figure 3: Measuring the time dependence of pressure-induced zeolite collapse by using XRD.
Figure 4: Temperature–pressure relations for the amorphization of zeolite A and zeolite Y.
Figure 5: Rheological characteristics of zeolite amorphization induced by temperature and pressure.

Similar content being viewed by others

References

  1. Sharma, S.M. & Sikka, S.K. Pressure-induced amorphisation of materials. Prog. Mater. Sci. 40, 1–77 (1996).

    Article  CAS  Google Scholar 

  2. Richet, P. & Gillet, P. Pressure-induced amorphisation of minerals: a review. Eur. J. Mineral. 9, 907–933 (1997).

    Article  CAS  Google Scholar 

  3. Cohen, M.H., Íñiguez, J. & Neaton, B. Flat bands and pressure amorphisation. J. Non-Cryst. Solids 307–310, 602–612 (2002).

    Article  Google Scholar 

  4. Sciortino, F. et al. Crystal stability limits at positive and negative pressures, and crystal-to-glass transitions. Phys Rev. E 52, 6484–6491 (1995).

    Article  CAS  Google Scholar 

  5. Ponyatovsky, E.G. & Barkolov, O.I. Pressure induced amorphous phases. Mater. Sci. Rep. 8, 147–191 (1992).

    Article  Google Scholar 

  6. Mishma, O., Calvert, L.D. & Whalley E. 'Melting ice' I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984).

    Article  Google Scholar 

  7. Hemley, R.J., Jephcote, A.P., Mao, H.K., Ming, L.C. & Manghnani, M.H. Pressure-induced amorphisation of crystalline silica. Nature 334, 52–54 (1988).

    Article  CAS  Google Scholar 

  8. Kingma, K.J., Hemley, R.J., Mao, H.-K. & Veblen, D.R. New high-pressure transformation in α-quartz. Phys. Rev. Lett. 70, 3927–3930 (1993).

    Article  CAS  Google Scholar 

  9. Binggeli, N., Keskar, N.R. & Chelikowsky, J.R. Pressure-induced amorphisation, elastic instability and soft modes in alpha-quartz. Phys. Rev. B 49, 3075–3081 (1994).

    Article  CAS  Google Scholar 

  10. Deb, S.K., Wilding, M., Somayazulu, M. & McMillan, P.F. Pressure-induced amorphisation and an amorphous-amorphous transition in densified porous silicon. Nature 414, 528–530 (2001).

    Article  CAS  Google Scholar 

  11. Skinner, B.J. & Fahey, J.J. Observations on the inversion of stishotite to silica glass. J. Geophys. Res. 68, 5595–5604 (1963).

    Article  CAS  Google Scholar 

  12. Richet, P. Superheating, melting & vitrification through decompression. Nature 331, 56–58 (1988).

    Article  CAS  Google Scholar 

  13. Hemmati, M. et al. Crystalline-amorphous transition in silicate perovskites. Phys. Rev. B 51, 14841–14848 (1995).

    Article  CAS  Google Scholar 

  14. Sankar, G. et al. Combined QuEXAFS-XRD: a new technique in high-temperature materials chemistry; an illustrative in situ study of zinc oxide enhanced solid state production of cordierite from a precurser zeolite. J. Phys. Chem. 97, 9550–9554 (1993).

    Article  CAS  Google Scholar 

  15. Colyer, L.M. et al. In situ study of ceramic formation from Co2+ Cu2+ and Zn2+ exchanged zeolite-A using combined XRD/XAFS techniques. Nucl. Instr. Meth. Phys. Res. B 97, 107–110 (1995).

    Article  CAS  Google Scholar 

  16. Colyer, L.M. Recrystallisation Processes in Transition Metal Exchanged Zeolite-A. Thesis, Univ. Keele (1996).

    Google Scholar 

  17. Colyer, L.M., Greaves, G.N., Carr, S.W. & Fox, K.K. Collapse and recrystallisation processes in zinc-exchanged zeolite-A: a combined x-ray diffraction, XAFS, and NMR study. J. Phys. Chem. 101, 10105–10114 (1997).

    Article  CAS  Google Scholar 

  18. Greaves, G.N. in Phase Transitions and Self-Organisation in Electronic and Molecular Materials (eds Phillips, J.C. & Thorpe, M.F.) 225–246 (Kluwer/Plenum, New York, 2000).

    Google Scholar 

  19. Greaves, G.N. in Frontiers of High Pressure Research II: Application of High Pressure to Low Dimensional Electronic Materials (ed. Hochheimer, H.D.) 53–71 (Kluwer/Plenum, New York, 2001).

    Book  Google Scholar 

  20. Dyer, A. An Introduction to Zeolite Molecular Sieves (Wiley, New York, 1988).

    Google Scholar 

  21. Dooryhee, E. et al. A study of cation environment and movement during dehydration and reduction of nickel-exchanged zeolite-Y by X-ray absorption and diffraction. J. Phys. Chem. 95, 1229–1236 (1991).

    Article  Google Scholar 

  22. Hammonds, K.D., Deng, H., Heine, V. & Dove, M.T. How floppy modes give rise to adsorption sites in zeolites. Phys. Rev. Lett. 78, 3701–3704 (1997).

    Article  CAS  Google Scholar 

  23. Dove, M.T., Hammonds, K.D. & Trachenko, K. in Rigidity Theory and Applications (eds Thorpe, M.F. & Duxbury, P.M.) 217–238 (Kluwer/Plenum, New York, 1999).

    Google Scholar 

  24. Villaescusa, L.A., Lightfoot, P., Teat, S.J. & Morris R.E. Variable-temperature microcrystal X-ray diffraction studies of negative thermal expansion in the pure silica zeolite IFR. J. Am. Chem. Soc. 123, 5453–5459 (2001).

    Article  CAS  Google Scholar 

  25. Hazan, R.M. Zeolite molecular sieve 4A: anomalous compressibility and volume discontinuities at high pressure. Science 219, 1065–1067 (1983).

    Article  Google Scholar 

  26. Toplis, M.J., Dingwell, D.B, Hess, K.-U. & Lenci, T. Viscosity, fragility, and configurational entropy of melts along the join SiO2-NaAlSiO4 . Am. Mineral. 82, 979–990 (1997).

    Article  CAS  Google Scholar 

  27. Webb, S. & Dingwell, D.B. in Structure, Dynamics and Properties of Silicate Melts (Reviews in Mineralogy Vol. 32) (eds Stebbins, J.F., McMillan, P.F. & Dingwell, D.G.) 95–119 (Mineralogical Society of America, Washington DC, 1995).

    Book  Google Scholar 

  28. Duran, J. Sands, Powders, and Grains 127–153 (Springer, New York, 1999).

    Google Scholar 

  29. Neuville, D.R. & Richet, P. Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets. Geochim. Cosmochim. Acta 55, 1011–1019 (1991).

    Article  CAS  Google Scholar 

  30. Angell, C.A. in Relaxation in Complex Systems 3–11 (Office of Naval Research, Washington DC, 1985).

    Google Scholar 

  31. Lowenstein, W. The distribution of aluminium in the tetrahedra of silicates and aluminosilicates. Am. Mineral. 39, 92–96 (1954).

    Google Scholar 

  32. Kauzmann, W. The nature of the glassy state and the behaviour of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. A. Angell, M. H. Cohen, D. B. Dingwell, S. Webb, K. Walters and M. Wilding for discussions. The experimental work was financially supported from the UK Engineering and Physical Sciences Research Council and X-ray facilities at the Synchrotron Radiation Source, Daresbury Laboratory, UK. F.M. thanks the EU Framework 5 Programme for a studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Greaves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greaves, G., Meneau, F., Sapelkin, A. et al. The rheology of collapsing zeolites amorphized by temperature and pressure. Nature Mater 2, 622–629 (2003). https://doi.org/10.1038/nmat963

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing