Self-assembled nanoscale biosensors based on quantum dot FRET donors

Abstract

The potential of luminescent semiconductor quantum dots (QDs) to enable development of hybrid inorganic-bioreceptor sensing materials has remained largely unrealized. We report the design, formation and testing of QD–protein assemblies that function as chemical sensors. In these assemblies, multiple copies of Escherichia coli maltose-binding protein (MBP) coordinate to each QD by a C-terminal oligohistidine segment and function as sugar receptors. Sensors are self-assembled in solution in a controllable manner. In one configuration, a β-cyclodextrin-QSY9 dark quencher conjugate bound in the MBP saccharide binding site results in fluorescence resonance energy-transfer (FRET) quenching of QD photoluminescence. Added maltose displaces the β-cyclodextrin-QSY9, and QD photoluminescence increases in a systematic manner. A second maltose sensor assembly consists of QDs coupled with Cy3-labelled MBP bound to β-cyclodextrin-Cy3.5. In this case, the QD donor drives sensor function through a two-step FRET mechanism that overcomes inherent QD donor–acceptor distance limitations. Quantum dot–biomolecule assemblies constructed using these methods may facilitate development of new hybrid sensing materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of the ability of MBP-5HIS (C-terminal penta-histidine) to coordinate with QDs as compared with MBP (minus the penta-histidine).
Figure 2: Function and properties of the 560QD-MBP nanosensor.
Figure 3: Excited-state properties of the 560QD-MBP nanosensor.
Figure 4: Function and properties of the 530 QD-MBP-Cy3-β-CD-Cy3.5 nanosensor.
Figure 5: Excited-state properties of the 530QD-MBP-Cy3-β-CD-Cy3.5 nanosensor.
Figure 6: Cutaway schematic depicting critical Förster distances.

References

  1. 1

    Iqbal, S.S. et al. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelect. 15, 549–578 ( 2000).

    CAS  Article  Google Scholar 

  2. 2

    O'Connell, P.J. & Guilbault, G.G. Future trends in biosensor research. Anal. Lett. 34, 1063–1078 ( 2001).

    CAS  Article  Google Scholar 

  3. 3

    De Lorimier, R.M. et al. Construction of a fluorescent biosensor family. Protein Sci. 11, 2655–2675 ( 2002).

    CAS  Article  Google Scholar 

  4. 4

    Scheller, F.W., Wollenberger, U., Warsinke, A., & Lisdat, F. Research and development in biosensors. Curr. Opin. Biotech. 12, 35–40 ( 2001).

    CAS  Article  Google Scholar 

  5. 5

    Hellinga, H.W. & Marvin, J.S. Protein engineering and the development of generic biosensors. Trends Biotech. 16, 183–189 ( 1998).

    CAS  Article  Google Scholar 

  6. 6

    Benson, D.E., Conrad, D.W., de Lorimer, R.M., Trammel, S.A. & Hellinga, H.W. Design of bioelectronic interfaces by exploiting hinge-bending motions of proteins. Science 293, 1641–1644 ( 2001).

    CAS  Article  Google Scholar 

  7. 7

    Mattoussi, H. et al. Self-Assembly of CdSE-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12450 ( 2000).

    CAS  Article  Google Scholar 

  8. 8

    Bruchez, M., Moronne, J.M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2018 ( 1998).

    CAS  Article  Google Scholar 

  9. 9

    Chan, W.C.W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–1028 ( 1998).

    CAS  Article  Google Scholar 

  10. 10

    Goldman, E.R. et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 274, 841–847 ( 2002).

    Article  Google Scholar 

  11. 11

    Goldman, E.R. et al. Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 122, 6378–6382 ( 2002).

    Article  Google Scholar 

  12. 12

    Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1761 ( 2002).

    CAS  Article  Google Scholar 

  13. 13

    Jaiswal, J.K., Mattoussi, H, Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotech. 21, 47–51 ( 2003).

    CAS  Article  Google Scholar 

  14. 14

    Mattoussi, H, et al. in Optical Biosensors: Present and Future (eds Ligler, F.S. & Rowe Taitt, C.A.). (Elsevier, The Netherlands, 2002).

    Google Scholar 

  15. 15

    Akerman, M.E. et al. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 ( 2002).

    CAS  Article  Google Scholar 

  16. 16

    Wu, X.Y. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotech. 21, 41–46 ( 2003).

    CAS  Article  Google Scholar 

  17. 17

    Kagan, C.R., Murray, C.B. & Bawendi, M.G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633–8643 ( 1996).

    CAS  Article  Google Scholar 

  18. 18

    Kagan, C.R., Murray, C.B. Nirmal, M. & Bawendi, M.G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517–1520 ( 1996).

    CAS  Article  Google Scholar 

  19. 19

    Crooker, S.A., Hollingsworth, J.A., Tretiak, S. & Klimov, V.I. Sprectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 ( 2002).

    CAS  Article  Google Scholar 

  20. 20

    Willard, D.M., Carillo, L.L., Jung, J. & Van Orden, A. CdSe-ZnS Quntum Dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett. 1, 469–474 ( 2001).

    CAS  Article  Google Scholar 

  21. 21

    Wang, S., Mamedova, N, Kotov, N.A., Chem, W. & Studer, J. Antigen/antibody immunocomplex from CdTE nanoparticle bioconjugates. Nano Lett. 2, 817–822 ( 2002).

    CAS  Article  Google Scholar 

  22. 22

    Gilardi, G., Zhou, L.Q., Hibbert, L. & Cass, A.E. Engineering the maltose binding protein for reagentless fluorescence sensing. Anal. Chem. 66, 3840–3847 ( 1994).

    CAS  Article  Google Scholar 

  23. 23

    Marvin, J.S. et al. The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc. Natl Acad. Sci. USA 94, 4366–4371 ( 1997).

    CAS  Article  Google Scholar 

  24. 24

    Fehr, M., Frommer, W.B. & Lalonde, S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc. Natl Acad. Sci. USA 99, 9846–9851 ( 2002).

    CAS  Article  Google Scholar 

  25. 25

    Medintz, I.L., Goldman, E.R., Lassman, M.E. & Mauro, J.M. A fluorescence resonance energy transfer sensor based on maltose binding protein. Bioconj. Chem. (in the press).

  26. 26

    Lakowicz, J.R. Principles of Fluorescence Spectroscopy 2nd edn (Kluwer Academic, New York, 1999).

    Google Scholar 

  27. 27

    Flora, B., Gusman, H., Helmerhorst, E.J., Troxler, R.F. & Oppenheim, F.G. A new method for the isolation of histatins 1, 3, and 5 from parotid secretion using zinc precipitation. Protein Expr. Purif. 23, 198–206 ( 2001).

    CAS  Article  Google Scholar 

  28. 28

    Mamedova, N.N., Kotov, N.A., Rogach, A.L. & Studer, J. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett. 1, 281–286 ( 2001).

    CAS  Article  Google Scholar 

  29. 29

    Wang, L.Y., Kan, X.W., Zhang, M.C., Zhu, C.Q. & Wang, L. Fluorescence for the determination of protein with functionalized nano-ZnS. The Analyst 127, 1531–1534 ( 2002).

    CAS  Article  Google Scholar 

  30. 30

    Hanaki, K. et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Comm. 302, 496–501 ( 2003).

    CAS  Article  Google Scholar 

  31. 31

    Sharff, A.J., Rodseth, L.E. & Quicho, F.A. Refined 1.8 Å structure reveals the mode of binding of β–cyclodextrin to the maltodextrin binding protein. Biochemistry 32, 10553–10559 ( 1993).

    CAS  Article  Google Scholar 

  32. 32

    Kawahara, S., Uchimaru, T. & Murata, S. Sequential multistep energy transfer: enhancement of efficiency of long-range fluorescence resonance energy transfer. Communication 6, 563–564 ( 1999).

    Google Scholar 

  33. 33

    Tong, A.K., Li, Z., Jones, G.S., Russon, J.J. & Ju, J. Combinatorial fluorescence energy transfer tags for multiplex biological assays. Nature Biotech. 19, 756–759 ( 2001).

    CAS  Article  Google Scholar 

  34. 34

    Guether, R. & Reddington, M.V. Photostable cyanine dye β-cyclodextrin conjugates. Tetrahedr. Lett. 38, 6167–6170 ( 1997).

    CAS  Article  Google Scholar 

  35. 35

    Watrob, H.M., Pan, C.P. & Barkley, M.D. Two-step FRET as a structural tool. J. Am. Chem. Soc. 125, 7336–7343 ( 2003).

    CAS  Article  Google Scholar 

  36. 36

    Schafer, F. et al. Automated high-throughput purification of 6XHis-tagged proteins. J. Biomol. Tech. 13, 131–137 ( 2002).

    Google Scholar 

  37. 37

    Pathak, S. et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123, 4103–4104 ( 2001).

    CAS  Article  Google Scholar 

  38. 38

    Gerion, D. et al. Sorting fluorescent nanocrystals with DNA. J. Am. Chem. Soc. 124, 7070–7074 ( 2002).

    CAS  Article  Google Scholar 

  39. 39

    Guo, W., Li, J.J., Wang, Y.A. & Peng, X. Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes:superior chemical, photochemical and thermal stability J. Am. Chem. Soc. 125, 3901–3909 ( 2003).

    CAS  Article  Google Scholar 

  40. 40

    Willner, I., Patolsky, F. & Wasserman, J. Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew. Chem. Int. Edn Engl. 40, 1861–1864 ( 2001).

    CAS  Article  Google Scholar 

  41. 41

    Lindsey, C.P. & Pattersson, G.D. Detailed comparison of the Williams-Watts and Cole-Davidson functions. J. Chem. Phys. 73, 3348–3357 ( 1980).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank H. Hellinga and D. Conrad (Duke University) for providing the plasmid with the MBP-HIS-tagged gene sequence used and P.T. Tran for helpful insight. I.L.M. and A.R.C. are supported by National Research Council Fellowships through the Naval Research Laboratory. B.F. acknowledges the National Defense Science and Engineering Graduate Fellowship Program for support. H.M., E.R.G. and J.M.M acknowledge K. Ward at the Office of Naval Research (ONR) for research support and grant number N001400WX20094 for financial support. The views, opinions, and/or findings described in this report are those of the authors and should not be construed as official Department of the Navy positions, policies, or decisions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hedi Mattoussi or J. Matthew Mauro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Medintz, I., Clapp, A., Mattoussi, H. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Mater 2, 630–638 (2003). https://doi.org/10.1038/nmat961

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing