Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrostatic nanolithography in polymers using atomic force microscopy


The past decade has witnessed an explosion of techniques used to pattern polymers on the nano (1–100 nm) and submicrometre (100–1,000 nm) scale, driven by the extensive versatility of polymers for diverse applications, such as molecular electronics1,2, data storage3, optoelectronics4, displays5, sacrificial templates6,7 and all forms of sensors. Conceptually, most of the patterning techniques, including microcontact printing (soft lithography)8, photolithography9,10, electron-beam lithography11, block-copolymer templating12,13 and dip-pen lithography14, are based on the spatially selective removal or formation/deposition of polymer. Here, we demonstrate an alternative and novel lithography technique—electrostatic nanolithography using atomic force microscopy—that generates features by mass transport of polymer within an initially uniform, planar film without chemical crosslinking, substantial polymer degradation or ablation. The combination of localized softening of attolitres (102–105 nm3) of polymer by Joule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single-step process methodology using conventional atomic force microscopy (AFM) equipment, establishes a new paradigm for polymer nanolithography, allowing rapid (of the order of milliseconds) creation of raised (or depressed) features without external heating of a polymer film or AFM tip–film contact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of AFMEN-patterned structures formed in spun-cast, vacuum-annealed polymer films.
Figure 2: Idealized presentation of the initial writing geometry and feature formation (not to scale).
Figure 3: Comparison of the dimensions D of AFMEN-produced dots (filled circles) and calculation of the diameter d of the isotherm at T = Tg (solid line).

Similar content being viewed by others


  1. Chen, J., Reed, M.A., Rawlett, A.M. & Tour, J.M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 ( 1999).

    Article  CAS  Google Scholar 

  2. Huang, Y., Duan, X., Wei, Q. & Lieber, C.M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 ( 2001).

    Article  CAS  Google Scholar 

  3. The Future of Data Storage Technologies (International Technology Research Institute World Technology Division Report, Loyola, Maryland, 1999).

  4. Lee, K.S. (ed.) Polymers for Photonic Applications: Nonlinear, Optical and Electroluminescence Polymers (Springer, New York, 2002).

    Book  Google Scholar 

  5. Bastiaansen, C., Tervoort, T. & Weder, C. (eds) Polymers in Display Applications (Macromolecular Symposium 154, Wiley, New York, 2000).

    Google Scholar 

  6. Wallraff, G.M. & Hinsberg, W.D. Lithographic imaging techniques for the formation of nanoscopic features. Chem. Rev. 99, 1801–1822 ( 1999).

    Article  CAS  Google Scholar 

  7. Xia, Y., Rogers, J.A., Paul, K.E. & Whitesides, G.W. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 ( 1999).

    Article  CAS  Google Scholar 

  8. Xia, Y. & Whitesides, F.M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 ( 1998).

    Article  CAS  Google Scholar 

  9. Levinson, H.J. & Arnold, W.H. in Handbook of Microlithography, Micro Machining and Microfabrciation Vol.1 (ed. Rai-Choudhury, P.) 11–139 (SPIE, New York, 1997).

    Google Scholar 

  10. Bae, Y. et al. Tailoring transparency of imageable fluoropolymers at 157 nm by incorporation of hexafluoroisopropyl alcohol to photoresist backbones. Chem. Mater. 14, 1306–1313 ( 2002).

    Article  CAS  Google Scholar 

  11. McCord, M.A. & Rocks, M.J. in Handbook of Microlithography, Micro Machining and Microfabrciation Vol. 1 (ed. Rai-Choudhury, P.) 139–252 (SPIE, New York, 1997).

    Google Scholar 

  12. Park, M., Harrison, C., Chaikin, P.M., Register, R.A. & Adamson, D.H. Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science 276, 1401–1404 ( 1997).

    Article  CAS  Google Scholar 

  13. Lammertink, R. et al. Nanostructured thin films of organic-organometallic block copolymers. One-step lithography with poly(ferrocenylsilanes) by reactive ion etching. Adv. Mater. 12, 98–103 ( 2000).

    Article  CAS  Google Scholar 

  14. Piner, R.D., Zhu, J., Xu, F., Hong, S. & Mirkin, C.A. “Dip-Pen” nanolithography. Science 283, 661–663 ( 1999).

    Article  CAS  Google Scholar 

  15. Chou, S.Y., Zhuang, L. & Guo, L. Lithographically induced self-construction of polymer microstructures for resistless patterning. Appl. Phys. Lett. 75, 1004–1006 ( 1999).

    Article  CAS  Google Scholar 

  16. Chou, S.Y. & Zhuang, L. Lithographically induced self-assembly of periodic polymer micropillar arrays. J. Vac. Sci. Tech. B 17, 3197–3202 ( 1999).

    Article  CAS  Google Scholar 

  17. Herminghaus, S. Dynamical instability of thin liquid films between conducting media. Phys. Rev. Lett. 83, 2359–2361 ( 1999).

    Article  CAS  Google Scholar 

  18. Schaffer, E., Thurn-Albrecht, T., Russel, T. & Steiner, U. Electrically induced structure formation and pattern transfer. Nature 403, 874–877 ( 2000).

    Article  CAS  Google Scholar 

  19. Mamin, H.J. & Rugar, D. Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003–1005 ( 1992).

    Article  CAS  Google Scholar 

  20. Vettiger, P. et al. The “millipede” – more than one thousand tips for future AFM data storage. IBM J. Res. Develop. 44, 323–340 ( 2000).

    Article  CAS  Google Scholar 

  21. Vettiger, P. et al. The “millipede” - nanotechnology entering data storage. IEEE Trans. Nanotech. 1, 39–55 ( 2002).

    Article  Google Scholar 

  22. Lyuksyutov, S.F., Paramonov, P.B., Dolog, I.I. & Ralich, R.M. Peculiarities of anomalous electronic current duting AFM-assisted nanolithography on n-type silicon. Nanotechnology 14, 716–721 ( 2003).

    Article  CAS  Google Scholar 

  23. Perez-Murano F., Birkelund K., Morimoto, K. & Dagata. J. Voltage modulation scanned probe oxidation Appl. Phys. Lett. 75, 199–201 ( 1999).

    Article  CAS  Google Scholar 

  24. Kroschwitz, J.I. (ed.) Electrical and Electronic Properties of Polymers: A State-of-the-Art Compendium 116–119 (Wiley, New York, 1988).

    Google Scholar 

  25. Gorbunov, V.V., Fuchigami, N. & Tsukruk, V.V. Microthermal probing of thin polymer films. High Perf. Polym. 12, 603–610 ( 2000).

    Article  CAS  Google Scholar 

  26. Tanner, R.I. Engineering Rheology (Clarendon, Oxford, UK, 1985).

    Google Scholar 

  27. Osswald, T.A. & Menges, G. Material Science of Polymers for Engineers 384–403 (Hansen & Gardner, New York, 1996).

    Google Scholar 

  28. Dang, T.D. et al. Synthesis and characterization of fluorinated benzoxazole polymers with high Tg and low dielectric constant. J. Polym. Sci. A 38, 1991–2003 ( 2000).

    Article  CAS  Google Scholar 

Download references


S.F.L. acknowledges support from the US National Research Council, Air Force Office for Scientific Research, and the Air Force Research Laboratory, Materials and Manufacturing Directorate.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Sergei F. Lyuksyutov or Richard A. Vaia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyuksyutov, S., Vaia, R., Paramonov, P. et al. Electrostatic nanolithography in polymers using atomic force microscopy. Nature Mater 2, 468–472 (2003).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing