Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic resolution of lithium ions in LiCoO2

Abstract

LiCoO2 is the most common lithium storage material for lithium rechargeable batteries, used widely to power portable electronic devices such as laptop computers1,2,3. Operation of lithium rechargeable batteries is dependent on reversible lithium insertion and extraction processes into and from the host materials of lithium storage. Ordering of lithium and vacancies3,4,5,6 has a profound effect on the physical properties of the host materials and the electrochemical performance of lithium batteries. However, probing lithium ions has been difficult when using traditional X-ray and neutron powder diffraction techniques due to lithium's relatively low scattering power when compared with those of oxygen and transition metals. In the work presented here, we have succeeded in simultaneously resolving columns of cobalt, oxygen and lithium atoms in layered LiCoO2 battery material, using experimental focal series of LiCoO2 images obtained at sub-ångstrom resolution in a mid-voltage transmission electron microscope. Lithium atoms are the smallest and lightest metal atoms, and scatter electrons only very weakly. We believe our observations of lithium to be the first by electron microscopy, and that they show promise for direct visualization of the ordering of lithium and vacancies in transition metal oxides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of the layered LiCoO2 structure with space group R3̄m.
Figure 2: Lighter atoms require improved resolution.
Figure 3: Visibility of Li improves with specimen thickness.
Figure 4: Experimental image of Li atom columns confirmed by simulation.

Similar content being viewed by others

References

  1. Mizushima, K., Jones, P.C., Wiseman, P.J. & Goodenough, J.B. LixCoO2 (0<x≤1) : a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 ( 1980).

    Article  CAS  Google Scholar 

  2. Ohzuku, T. & Ueda, A. Solid-state redox reactions of LiCoO2 (R-3m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 141, 2972–2977 ( 1994).

    Article  CAS  Google Scholar 

  3. Reimers, J.N. & Dahn, J.R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2 . J. Electrochem. Soc. 139, 2091–2097 ( 1992).

    Article  CAS  Google Scholar 

  4. Shao-Horn, Y., Levasseur, S., Weill, F. & Delmas, C. Probing lithium and vacancies ordering in LixCoO2 (x ≈ 0.5): An electron diffraction study. J. Electrochem. Soc. 150, A366–A373 ( 2003).

    Article  CAS  Google Scholar 

  5. Pérès, J.P., Weill, F. & Delmas, C. Lithium/vacancy ordering in the monoclinic LixNiO2 (0.50 ≤ x ≤ 0.75) solid solution. Solid State Ionics 116, 19 ( 1999).

    Article  Google Scholar 

  6. Vanderven, A. & Ceder, G. Lithium diffusion in layered LixCoO2 . Electrochem. Solid State Lett. 3, 301–304 ( 2000).

    Article  CAS  Google Scholar 

  7. O'Keefe, M.A. Resolution in high-resolution electron microscopy. Ultramicroscopy 47, 282–297 ( 1992).

    Article  Google Scholar 

  8. Scherzer, O. The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29 ( 1949).

    Article  CAS  Google Scholar 

  9. Horiuchi, S. et al. Ultra-high-resolution HVEM (H-1500) newly constructed at NIRIM. II. Application to materials. Ultramicroscopy 39, 231–237 ( 1991).

    Article  Google Scholar 

  10. Zhang, Y., Ichinose, H., Ishida, Y., Ito, K. & Nakanose, M. Atomic and electronics structures of grain boundary in chemical vapor deposited diamond thin films. Mater. Sci. Forum 204, 207 ( 1996).

    Article  Google Scholar 

  11. Haider, M., Braunshausen, G. & Schwan, E. Correction of the spherical aberration of a 200kV TEM by means of a hexapole-corrector. Optik 99, 167–179 ( 1995).

    Google Scholar 

  12. Jia, C.L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 ( 2003).

    Article  CAS  Google Scholar 

  13. Schiske, P. in Image Processing And Computer-Aided Design (ed. Hawkes, P.W.) 82–90 (Academic, London, 1973).

  14. O'Keefe, M.A. in LBL Symposium on Microstructures of Materials (ed. Krishnan, K.) 121–126 (San Francisco Press, Berkeley, California, 1993).

    Google Scholar 

  15. Downing, K.H., Hu, M., Wenk, H. & O'Keefe, M.A. Resolution of oxygen atoms in staurolite by three-dimensional transmission electron microscopy. Nature 348, 525–528 ( 1990).

    Article  CAS  Google Scholar 

  16. Jia, C.L. & Thust, A. Investigation of atomic displacements at a Σ3 {111} twin boundary in BaTiO3 by means of phase-retrieval electron microscopy. Phys. Rev. Lett. 82, 5052–5055 ( 1999).

    Article  CAS  Google Scholar 

  17. Kisielowski, C. et al. Imaging columns of the light elements carbon, nitrogen and oxygen at sub-Ångstrom resolution. Ultramicroscopy 89, 243–263 ( 2001).

    Article  CAS  Google Scholar 

  18. O'Keefe, M.A. et al. Sub-ångstrom high-resolution transmission electron microscopy at 300keV. Ultramicroscopy 89, 215–241 ( 2001).

    Article  CAS  Google Scholar 

  19. Tang, D., Teng, C.M., Zou, J. & Li, F.H. Pseudo-weak-phase-object approximation in high-resolution electron microscopy. II. Feasibility of directly observing Li+. Acta Crystallogr. B 42, 340–342 ( 1986).

    Article  Google Scholar 

  20. Levasseur, S., Menetrier, M., Suard, E. & Delmas, C. Evidence for structural defects in non-stoichiometric HT-LiCoO2 : electrochemical, electronic properties and 7LiNMR studies. Solid State Ionics 128, 11–24 ( 2000).

    Article  CAS  Google Scholar 

  21. Ceder, G., Aydinol, M.K. & Kohan, A.F. Application of first-principles calculations to the design of rechargeable Li-batteries. Comp. Mater. Sci. 8, 161–169 ( 1997).

    Article  CAS  Google Scholar 

  22. O'Keefe, M.A., Buseck, P.R. & Iijima, S. Computed crystal structure images for high resolution electron microscopy. Nature 274, 322–324 ( 1978).

    Article  CAS  Google Scholar 

  23. Cowley, J.M. & Iijima, S. Electron microscope image contrast for thin crystals. Z. Naturforsch. 27a, 445–451 ( 1972).

    Google Scholar 

  24. Cowley, J.M. & Moodie, A.F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609–623 ( 1957).

    Article  CAS  Google Scholar 

  25. Dahn, J.R., Fuller, E.W., Obrovac, M. & Von Sacken, U. Thermal stability of LixCoO2, LixNiO2 and lambda-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics 69, 265–270 ( 1994).

    Article  CAS  Google Scholar 

  26. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 ( 1993).

    Article  CAS  Google Scholar 

  27. Thust, A., Coene, W.M.J., Op de Beeck, M. & Van Dyck, D. Focal-series reconstruction in HRTEM: simulation studies on non-periodic objects. Ultramicroscopy 64, 211–230 ( 1996).

    Article  CAS  Google Scholar 

  28. Coene, W.M.J., Thust, A., Op de Beeck, M. & Van Dyck, D. Maximum-likehood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109–135 ( 1996).

    Article  CAS  Google Scholar 

  29. O'Keefe, M.A., Nelson, E.C., Wang, Y.C. & Thust, A. Sub-ångstrom resolution of atomistic structures below 0.8Å. Phil. Mag. B 81, 1861–1878 ( 2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation International Research Fellow Award INT-0000429 and the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences Division, of the US Department of Energy, under contract No. DE-AC03-76SF00098. The experimental HRTEM data were collected at The National Center for Electron Microscopy, Lawrence Berkeley Laboratory, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shao-Horn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao-Horn, Y., Croguennec, L., Delmas, C. et al. Atomic resolution of lithium ions in LiCoO2. Nature Mater 2, 464–467 (2003). https://doi.org/10.1038/nmat922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat922

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing