Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanostructured surfaces from size-selected clusters

Abstract

The deposition of ionized beams of size-selected atomic clusters onto well-defined substrates represents a new method of preparing nanostructured surfaces, with lateral feature sizes in the range 1–10 nm. 'Pinning' of the incident clusters prevents the diffusion of the clusters on the surface, and thus preserves the gas-phase cluster size, even at room temperature and above. At the same time, advances in diblock copolymer techniques allow the preparation of ordered two-dimensional arrays of clusters. Here we discuss the creation and applications of these nanostructured surfaces, ranging from the fabrication of semiconductor nanostructures to the immobilization of protein molecules.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deposition of size-selected Ag clusters on graphite.
Figure 2: Cluster pinning by pre-fabricated defects.
Figure 3: Protein immobilization by pinned Au cluster arrays.
Figure 4: Ordered arrays of nanoparticles.

References

  1. Sattler, K., Mühlbach, J. & Recknagel, E. Generation of metal clusters containing from 2 to 500 atoms. Phys. Rev. Lett. 45, 821–824 ( 1980).

    Article  CAS  Google Scholar 

  2. Dietz, T.G., Duncan, M.A., Powers, D.E. & Smalley, R.E. Laser production of supersonic metal cluster beams. J. Chem. Phys. 74, 6511–6512 ( 1981).

    Article  CAS  Google Scholar 

  3. Knight, W.D. et al. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52, 2141–2143 ( 1984).

    Article  CAS  Google Scholar 

  4. de Heer, W.A. The physics of simple metal-clusters - experimental aspects and simple-models. Rev. Mod. Phys. 65, 611–676 ( 1993).

    Article  CAS  Google Scholar 

  5. Martin, T.P. Shells of atoms. Phys. Rep. 273, 199–241 ( 1996).

    Article  CAS  Google Scholar 

  6. Bardotti, L., Jensen, P., Hoareau, A., Treilleux, M. & Cabaud, B. Experimental observation of fast diffusion of large antimony clusters on graphite surfaces. Phys. Rev. Lett. 74, 4694–4697 ( 1995).

    Article  CAS  Google Scholar 

  7. Bettac, A., Koller, L., Rank, V. & Meiwes-Broer, K.H. Scanning tunneling spectroscopy on deposited platinum clusters. Surf. Sci. 404, 475–479 ( 1998).

    Article  Google Scholar 

  8. Binns, C. Nanoclusters deposited on surfaces. Surf. Sci. Rep. 44, 1–49 ( 2001).

    Article  CAS  Google Scholar 

  9. Bréchignac, C. et al. Instability driven fragmentation of nanoscale fractal islands. Phys. Rev. Lett. 88, 196103 ( 2002).

    Article  Google Scholar 

  10. Donadio, D., Colombo, L., Milani, P. & Benedek, G. Growth of nanostructured carbon films by cluster assembly. Phys. Rev. Lett. 83, 776–779 ( 1999).

    Article  CAS  Google Scholar 

  11. Heiz, U. & Schneider, W.D. Nanoassembled model catalysts. J. Phys. D 33, R85–R102 ( 2000).

    Article  CAS  Google Scholar 

  12. Jamet, M. et al. Magnetic anisotropy of a single cobalt nanocluster. Phys. Rev. Lett. 86, 4676–4679 ( 2001).

    Article  CAS  Google Scholar 

  13. Kaiser, B., Bernhardt, T.M., Stegemann, B., Opitz, J. & Rademann, K. Bimodal distribution in the fragmentation behavior of small antimony clusters Sbx+ (x = 3–12) scattered from a highly oriented pyrolitic graphite surface. Phys. Rev. Lett. 83, 2918–2921 ( 1999).

    Article  CAS  Google Scholar 

  14. Pauwels, B. et al. Transmission electron microscopy and Monte Carlo simulations of ordering in Au-Cu clusters produced in a laser vaporization source. Phys. Rev. B 63, 165406 ( 2001).

    Article  Google Scholar 

  15. Rattunde, O. et al. Surface smoothing by energetic cluster impact. J. Appl. Phys. 90, 3226–3231 ( 2001).

    Article  CAS  Google Scholar 

  16. Goldby, I.M., Kuipers, L., von Issendorff, B. & Palmer, R.E. Diffusion and aggregation of size-selected silver clusters on a graphite surface. Appl. Phys. Lett. 69, 2819–2821 ( 1996).

    Article  CAS  Google Scholar 

  17. Carroll, S.J., Seeger, K. & Palmer, R.E. Trapping of size-selected Ag clusters at surface steps. Appl. Phys. Lett. 72, 305–307 ( 1998).

    Article  CAS  Google Scholar 

  18. Carroll, S.J., Hall, S.G., Palmer, R.E. & Smith, R. Energetic impact of size-selected metal cluster ions on graphite. Phys. Rev. Lett. 81, 3715–3718 ( 1998).

    Article  CAS  Google Scholar 

  19. Carroll, S.J., Nellist, P.D., Palmer, R.E., Hobday, S. & Smith, R. Shallow implantation of 'size-selected' Ag clusters into graphite. Phys. Rev. Lett. 84, 2654–2657 ( 2000).

    Article  CAS  Google Scholar 

  20. Pratontep, S. et al. Scaling relations for implantation of size-selected Au, Ag and Si clusters into graphite. Phys. Rev. Lett. 90, 055503 ( 2003).

    Article  CAS  Google Scholar 

  21. Cleveland, C.L. & Landman, U. Dynamics of cluster-surface collisions. Science 257, 355–361 ( 1992).

    Article  CAS  Google Scholar 

  22. Bromann, K. et al. Controlled deposition of size-selected silver nanoclusters. Science 274, 956–958 ( 1996).

    Article  CAS  Google Scholar 

  23. Messerli, S. et al. Imaging size-selected silicon clusters with a low-temperature scanning tunneling microscope. Surf. Sci. 465, 331–338 ( 2000).

    Article  CAS  Google Scholar 

  24. Schaub, R. et al. Decorated Ag19 on Pt(111) or the 'rare gas necklace'. Phys. Rev. Lett. 86, 3590–3593 ( 2001).

    Article  CAS  Google Scholar 

  25. Meiwes-Broer, K.H. (ed.). Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry. (Springer, Berlin, 2000).

    Book  Google Scholar 

  26. Sanchez, E.J., Novotny, L., & Xie, X.S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 ( 1999).

    Article  CAS  Google Scholar 

  27. von Issendorff, B. & Palmer, R.E. A new high transmission infinite range mass selector for cluster and nanoparticle beams. Rev. Sci. Instrum. 70, 4497–4501 ( 1999).

    Article  CAS  Google Scholar 

  28. Couillard, M., Pratontep, S., Palmer, R.E. & Nellist, P.D. in Electron Microscopy and Analysis 1999 545–548 (Institute of Physics Conference Series 161, IOP, UK, 1999).

    Google Scholar 

  29. Couillard, M., Pratontep, S. & Palmer, R.E. Metastable, ordered arrays of size-selected Ag clusters on graphite. Appl. Phys. Lett. 82, 2595–2597 ( 2003).

    Article  CAS  Google Scholar 

  30. Carroll, S.J. et al. Pinning of size-selected Ag clusters on graphite surfaces. J. Chem. Phys. 113, 7723–7727 ( 2000).

    Article  CAS  Google Scholar 

  31. Sanz-Navarro, C.F. et al. Scaling behavior of the penetration depth of energetic silver clusters in graphite. Phys. Rev. B 65, 165420 ( 2002).

    Article  Google Scholar 

  32. Braig, K., Adams, P.D. & Brunger, A.T. Conformational variability in the refined structure of the chaperonin GroEL at 2.8 angstrom resolution. Nature Struct. Biol. 2, 1083–1094 ( 1995).

    Article  CAS  Google Scholar 

  33. Hartl, F.U. & Hayer-Hartl, M. Protein folding—molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 ( 2002).

    Article  CAS  Google Scholar 

  34. Engel, A. & Müller, D.J. Observing single biomolecules at work with the atomic force microscope. Nature Struct. Biol. 7, 715–718 ( 2000).

    Article  CAS  Google Scholar 

  35. Viani, M.B. et al. Probing protein-protein interactions in real time. Nature Struct. Biol. 7, 644–647 ( 2000).

    Article  CAS  Google Scholar 

  36. Bravo, J. & Heath, J.K. Receptor recognition by gp130 cytokines. Embo. J. 19, 2399–2411 ( 2000).

    Article  CAS  Google Scholar 

  37. Mutis, T. et al. Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nature Med. 5, 839–842 ( 1999).

    Article  CAS  Google Scholar 

  38. Krinke, T.J., Fissan, H., Deppert, K., Magnusson, M.H. & Samuelson, L. Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase. Appl. Phys. Lett. 78, 3708–3710 ( 2001).

    Article  CAS  Google Scholar 

  39. Bardotti, L. et al. Organizing nanoclusters on functionalized surfaces. Appl. Surf. Sci. 191, 205–210 ( 2002).

    Article  CAS  Google Scholar 

  40. Jödicke, H., Schaub, R., Monot, R., Buttet, J. & Harbich, W. Energetic cluster deposition on a dislocation network: Ag7 on 2 ML Ag/Pt(111). Surf. Sci. 475, 109–117 ( 2001).

    Article  Google Scholar 

  41. Spatz, J.P. et al. Functional nanostructures by organized macromolecular-metallic hybrid systems. J. Lumin. 76–77, 168–173 ( 1998).

    Article  Google Scholar 

  42. Spatz, J.P. et.al. Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 16, 407–415 ( 2000).

    Article  CAS  Google Scholar 

  43. Boyen, H.G. et.al. X-ray photoelectron spectroscopy study on gold nanoparticles supported on diamond. Phys. Rev. B 65, 075412 ( 2002).

    Article  Google Scholar 

  44. Boyen, H.G. et.al. Oxidation-resistant gold-55 clusters. Science 297, 1533–1556 ( 2002).

    Article  CAS  Google Scholar 

  45. Koslowski, B. et.al. Fabrication of regularly arranged nanocolumns on diamond (100) using micellar masks, J. Appl. Phys. 87, 7533–7538 ( 2000).

    Article  CAS  Google Scholar 

  46. Spatz, J.P., Herzog, T., Mößmer, S., Ziemann, P. & Möller, M. Inorganic-polymer micellar hybrid systems—a tool for nanolithography. Adv. Mater. 11, 149–153 ( 1999).

    Article  CAS  Google Scholar 

  47. Seeger, K. & Palmer, R.E. Fabrication of silicon cones and pillars using rough metal films as plasma etching masks. Appl. Phys. Lett. 74, 1627–1629 ( 1999).

    Article  CAS  Google Scholar 

  48. Seeger, K. & Palmer, R.E. Fabrication of ordered arrays of silicon nanopillars. J. Phys. D 32, L129–L132 ( 1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Palmer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Palmer, R., Pratontep, S. & Boyen, HG. Nanostructured surfaces from size-selected clusters. Nature Mater 2, 443–448 (2003). https://doi.org/10.1038/nmat897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing