Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-cleaning surfaces — virtual realities

Abstract

In the 19th century, Oscar Wilde stated “We live, I regret to say, in an age of surfaces”. Today, we do so even more, and we do not regret it: key advances in the understanding and fabrication of surfaces with controlled wetting properties are about to make the dream of a contamination-free (or 'no-clean') surface come true. Two routes to self-cleaning are emerging, which work by the removal of dirt by either film or droplet flow. Although a detailed understanding of the mechanisms underlying the behaviour of liquids on such surfaces is still a basic research topic, the first commercial products in the household-commodity sector and for applications in biotechnology are coming within reach of the marketplace. This progress report describes the current status of understanding of the underlying mechanisms, the concepts for making such surfaces, and some of their first applications.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

Courtesy of S. Herminghaus.

Figure 2

Courtesy of D. Richard, C. Clanet and David Quéré14.

Figure 3

Courtesy of J. Bico, C. Marzolin and David Quéré6.

Figure 4: A Complementary DNA microarray on a silanized glass plate.

Courtesy of A. Bosio39, MEMOREC.

Figure 5

Courtesy of S. Herminghaus49.

References

  1. Cahn, J.W. Critical point wetting. J. Chem. Phys. 66, 3667–3672 (1977).

    CAS  Article  Google Scholar 

  2. Shafrin, E.G. & Zisman, W.A. in Contact Angle, Wettability and Adhesion Advances in Chemistry series, Vol. 43 (ed. Fowkes, F. M.) 145–167 (American Chemical Society, Washington D. C., 1964).

    Book  Google Scholar 

  3. Wenzel, R.N. Surface roughness and contact angle. Ind. Eng. Chem. 28, 988–994 (1936).

    CAS  Article  Google Scholar 

  4. Cassie, A.B.D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    CAS  Article  Google Scholar 

  5. Johnson, Jr., R.E. & Dettre, R.H. in Contact Angle, Wettability and Adhesion Advances in Chemistry series, Vol. 43 (ed. Fowkes, F. M.) 112–135 (American Chemical Society, Washington D. C., 1964).

    Book  Google Scholar 

  6. Bico, J., Marzolin, C. & Quéré, D. Pearl drops. Europhys. Lett. 47, 220–226 (1999).

    CAS  Article  Google Scholar 

  7. Swain, P.S. & Lipowsky, R. Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws. Langmuir 14, 6772–6780 (1998).

    CAS  Article  Google Scholar 

  8. Wolansky, G. & Marmur, A. The actual contact angle on a heterogeneous rough surface in three dimensions. Langmuir 14, 5292–5297 (1998).

    CAS  Article  Google Scholar 

  9. Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997).

    CAS  Article  Google Scholar 

  10. Von Baeyer, H.C. The lotus effect. The Sciences: Journal of The New York Academy of Sciences 12–15 (January/February 2000).

    Google Scholar 

  11. Richard, D. & Quéré, D. Viscous drops rolling on a tilted non-wettable solid. Europhys. Lett. 48, 286–291 (1999).

    CAS  Article  Google Scholar 

  12. Richard, D. & Quéré, D. Bouncing water drops. Europhys. Lett. 50, 769–775 (2000).

    CAS  Article  Google Scholar 

  13. Aussillous, P. & Quéré, D. Liquid marbles. Nature 411, 924–927 (2001).

    CAS  Article  Google Scholar 

  14. Richard, D., Clanet, C. & Quéré, D. Contact time of a bouncing drop. Nature 417, 811 (2002).

    CAS  Article  Google Scholar 

  15. Bico, J., Tordeux, C. & Quéré, D. Rough wetting. Europhys. Lett. 55, 214–220 (2001).

    CAS  Article  Google Scholar 

  16. Miwa, M., Fujishima, A., Hashimoto, K. & Watanabe, T. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16, 5754–5760 (2000).

    CAS  Article  Google Scholar 

  17. Mahadevan, L. & Pomeau, Y. Rolling droplets. Phys. Fluids 11, 2499–2453 (1999).

    Google Scholar 

  18. Öner, D. & McCarthy, T.J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16, 7777–7782 (2000).

    Article  Google Scholar 

  19. Huppert, H.E. Flow and instability of a viscous current running down a slope. Nature 300, 427–429 (1982).

    Article  Google Scholar 

  20. Seemann, R., Mönch, W. & Herminghaus, S. Liquid flow in wetting layers on rough substrates. Europhys. Lett. 55, 698–704 (2001).

    CAS  Article  Google Scholar 

  21. Herminghaus, S. Roughness-induced non-wetting. Europhys. Lett. 52, 165–170 (2000).

    Article  Google Scholar 

  22. Shibuchi, S., Onda, T., Satoh, N. & Tsuji, K. Super water-repellent surfaces resulting from fractal structure. J. Phys. Chem. 100, 19512–19517 (1996).

    Article  Google Scholar 

  23. Chen, W. et al. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmuir 15, 3395–3399 (1999).

    CAS  Article  Google Scholar 

  24. Youngblood, J.P. & McCarthy, T.J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Macromolecules 32, 6800–6806 (1999).

    CAS  Article  Google Scholar 

  25. Wu, Y., Sugimura, H., Inoue, Y. & Takai, O. Thin films with nanotextures for transparent and ultra water-repellent coatings produced from trimethylmethoxysilane by microwave plasma CVD. Chem. Vap. Depos. 8, 47–50 (2002).

    Article  Google Scholar 

  26. Nakajima, A., Hashimoto, K. & Watanabe, T. Recent studies on super-hydrophobic films. Monatsh. Chem. 132, 31–41 (2001).

    CAS  Article  Google Scholar 

  27. Reihs, K., Duparré, A. & Notni, G. Substrate with a reduced light-scattering, ultraphobic surface and a method for the production of the same. World patent 01/92179 (2001).

  28. McCarthy, T.J. & Fadeev, A.Y. Surface modification using hydridosilanes to prepare monolayers. World patent 00/069572 (2001).

  29. Russell, T.P. Surface-responsive materials. Science 297, 965–968 (2002).

    Article  Google Scholar 

  30. Coupe, B., Evangelista, M.E., Yeung, R.M. & Chen, W. Surface modification of poly-(tetrafluoroethylene-co-hexafluorpropylene) by adsorption of functional polymers. Langmuir 17, 1956–1960 (2001).

    CAS  Article  Google Scholar 

  31. Dupont-Gillain, Ch.C., Adriaensen, Y., Derclaye, S. & Rouxhet, P.G. Plasma-oxidized polystyrene: Wetting properties and surface reconstruction. Langmuir 16, 8194–8200 (2000).

    CAS  Article  Google Scholar 

  32. Husemann, M. et al. Manipulation of surface properties by patterning of covalently bound polymer brushes. J. Am. Chem. Soc. 122, 1844–1845 (2000).

    CAS  Article  Google Scholar 

  33. Wang, R. et al. Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997).

    CAS  Article  Google Scholar 

  34. Abbott, S., Ralston, J., Reynolds, G. & Hayes, R. Reversible wettability of photoresponsive pyrimidine-coated surfaces. Langmuir 15, 8923–8928 (1999).

    CAS  Article  Google Scholar 

  35. Tadanaga, K., Katata, N. & Minami, T. Formation process of super-water-repellant Al2O3 coating films with high transparency by the sol-gel method. J. Am. Ceram. Soc. 80, 3213–3229 (1997).

    CAS  Article  Google Scholar 

  36. Nakajima, A., Fujishima, A., Hashimoto, K. & Watanabe, T. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv. Mater. 11, 1365–1368 (1999).

    CAS  Article  Google Scholar 

  37. Nakajima, A., Hashimoto, K., Watanabe, T., Takai, K., Yamauchi, G. & Fujishima, A. Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 16, 7044–7047 (2000).

    CAS  Article  Google Scholar 

  38. Blossey, R. & Bosio, A. Contact line deposits on cDNA microarrays: A 'twin-spot effect'. Langmuir 18, 2952–2954 (2002).

    CAS  Article  Google Scholar 

  39. Deegan, R.D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    CAS  Article  Google Scholar 

  40. McHale, G., Rowan, S.M., Newton, M.I. & Banerjee, M.K. Evaporation and the wetting of a low-energy solid surface. J. Phys. Chem. B 102, 1964–1967 (1998).

    CAS  Article  Google Scholar 

  41. Parker, A.R. & Lawrence, C.R. Water capture by a desert beetle. Nature 414, 33–34 (2001).

    CAS  Article  Google Scholar 

  42. Huang, T.-L.J, Ko, J., Zhu, D.-W. & Fong, B.C. Patterned article having alternating hydrophilic and hydrophobic surface regions. World patent 99/57185 (2002).

  43. Herminghaus, S., Gau, H. & Mönch, W. Element with extremely strong water-repellant dry zones on the surface thereof. World patent 99/23437 (1999).

  44. Eickhoff, H., Nordhoff, E., Franzen, J. & Schürenberg, M. Processing of samples in solutions with a defined small wall contact surface. World patent 01/26797 (2001).

  45. Gillmor, S.D., Thiel, A.J., Strother, T.C., Smith, L.M. & Lagally, M.G. Hydrophilic/hydrophobic patterned surfaces as templates for DNA arrays. Langmuir 16, 7223–7228 (2000).

    CAS  Article  Google Scholar 

  46. Eickhoff, H., Schürenberg, M. & Nordhoff, E. 2D/3D-biochips — neue werkzeuge für die funktionelle genom- und proteomanalyse. Laborwelt III (transkript suppl.), 30–33 (2001).

  47. Whitesides, G.M. & Stroock, A.D. Flexible methods for microfluidics. Phys. Today 42–47 (2001).

  48. Drelich, J., Wilbur, J.L., Miller, J.D. & Whitesides, G.M. Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic/hydrophilic strips. Langmuir 12, 1913–1922 (1996).

    CAS  Article  Google Scholar 

  49. Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283, 46–49 (1999).

    CAS  Article  Google Scholar 

  50. Lam, P., Wynne, K.J. & Wnek, G.E. Surface-tension-confined microfluidics. Langmuir 18, 948–951 (2002).

    CAS  Article  Google Scholar 

  51. Darhuber, A.A., Troian, S.M. & Miller, S.M. Morphology of liquid microstructures on chemically patterned surfaces. J. Appl. Phys. 87, 7768–7775 (2000).

    CAS  Article  Google Scholar 

  52. Grunze, M. Driven liquids. Science 283, 41–42 (1999).

    CAS  Article  Google Scholar 

  53. Darhuber, A.A., Troian, S.M. & Reisner, W.W. Dynamics of capillary spreading along hydrophilic microstripes. Phys. Rev. E 64, 031603 (2001).

    CAS  Article  Google Scholar 

  54. Herminghaus, S. et al. Liquid microstructures at solid interfaces. J. Phys. A 11, 57–74 (1999).

    Google Scholar 

  55. Washizu, M. Electrostatic actuation of liquid droplets for microreactor applications. IEEE Trans. Ind. Appl. 34, 732–737 (1998).

    CAS  Article  Google Scholar 

  56. Torkkeli, A. et al. Electrostatic transportation of water droplets on superhydrophobic surfaces. Proc. IEEE MEMS 2001 475–478 (2001).

  57. Kim, J. & Kim, C.J. Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics. Proc. IEEE MEMS 2002 479–482 (2002).

  58. Lehto, A., Kojola, H., Lövgren, T. & Lönnberg, H. Method and device for carrying out a chemical analysis in small amounts of liquid. World patent 99/54730 (1999).

  59. Wixforth, A. Device and method for manipulating small quantities of materials. World patent 01/94017 (2001).

  60. Greenberg, C.B. et al. Photocatalytically-activated self-cleaning article and method of making same. World patent 98/41480 (2000).

  61. Ammerlaan, J.A.M., McCurdy, R.J. & Hurst, S.J. Process for the production of photocatalytic coatings on substrates. World patent 00/75087 (2000).

  62. Kazuhito, H. et al. Self-cleaning member having photocatalytic hydrophilic surface. Japanese patent 1,152,051 (2001).

Download references

Acknowledgements

The author would like to thank the Center for Bioinformatics, Saarland University, Saarbrücken, Germany, for its support during the preparation of this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blossey, R. Self-cleaning surfaces — virtual realities. Nature Mater 2, 301–306 (2003). https://doi.org/10.1038/nmat856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat856

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing