Abstract
Achieving control of light-material interactions for photonic device applications at nanoscale dimensions will require structures that guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. This cannot be achieved by using conventional waveguides1 or photonic crystals2. It has been suggested that electromagnetic energy can be guided below the diffraction limit along chains of closely spaced metal nanoparticles3,4 that convert the optical mode into non-radiating surface plasmons5. A variety of methods such as electron beam lithography6 and self-assembly7 have been used to construct metal nanoparticle plasmon waveguides. However, all investigations of the optical properties of these waveguides have so far been confined to collective excitations8,9,10, and direct experimental evidence for energy transport along plasmon waveguides has proved elusive. Here we present observations of electromagnetic energy transport from a localized subwavelength source to a localized detector over distances of about 0.5 μm in plasmon waveguides consisting of closely spaced silver rods. The waveguides are excited by the tip of a near-field scanning optical microscope, and energy transport is probed by using fluorescent nanospheres.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Observation of boundary induced chiral anomaly bulk states and their transport properties
Nature Communications Open Access 07 October 2022
-
All-optical information-processing capacity of diffractive surfaces
Light: Science & Applications Open Access 28 January 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Saleh, B.E.A. & Teich, M.C. Fundamentals of Photonics (Wiley, New York, 1991).
Mekis, A. et al. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996).
Quinten, M., Leitner, A., Krenn, J.R. & Aussenegg, F.R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).
Brongersma, M.L., Hartman, J.W. & Atwater, H.A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B 62, R16356 (2000).
Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer, Berlin, 1995).
Maier, S.A. et al. Plasmonics – a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).
McMillan, R.A. et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Mater. 1, 247–252 (2002).
Krenn, J.R. et al. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys. Rev. Lett. 82, 2590–2593 (1999).
Maier, S.A., Brongersma, M.L., Kik, P.G. & Atwater, H.A. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys. Rev. B 65, 193408 (2002).
Maier, S.A., Kik, P.G. & Atwater, H.A. Observation of coupled plasmon–polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Appl. Phys. Lett. 81, 1714–1716 (2002).
Maier, S.A., Brongersma, M.L. & Atwater, H.A. Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices. Appl. Phys. Lett. 78, 16–18 (2001).
Maier, S.A. et al. Optical-pulse propagation in metal nanoparticle chain waveguides. Phys. Rev. Lett. (submitted).
Lamprecht, B. et al. Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys. Rev. Lett. 84, 4721–4724 (2000).
Salerno, M., Felidj, N., Krenn, J.R., Leitner, A. & Aussenegg, F.R. Near-field optical response of a two-dimensional grating of gold nanoparticles. Phys. Rev. B 63, 165422 (2001).
Schider, G. et al. Optical properties of Ag and Au nanowire gratings. J. Appl. Phys. 90, 3825–3830 (2001).
Quinten, M. & Kreibig, U. Absorption and elastic scattering of light by particle aggregates. Appl. Opt. 32, 6173–6182 (1993).
Lieberman, K., Ben-Ami, N. & Lewis, A. A fully integrated near-field optical, far-field optical, and normal-force scanned probe microscopy. Rev. Sci. Instrum. 67, 3567–3572 (1996).
Fujihira, M. et al. Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and AFM. Ultramicroscopy 61, 271–277 (1995).
Acknowledgements
The authors are grateful to Richard Muller, Paul Maker, and Pierre Echternach of the Jet Propulsion Laboratory in Pasadena for professional help with electron beam lithography. This work was sponsored by the Air Force Office of Scientific Research and also partly by the NSF grants ECS0103543, EIA-98-71775 and DMI-02-09678 and the Center for Science and Engineering of Materials at Caltech.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Maier, S., Kik, P., Atwater, H. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater 2, 229–232 (2003). https://doi.org/10.1038/nmat852
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat852
This article is cited by
-
Observation of boundary induced chiral anomaly bulk states and their transport properties
Nature Communications (2022)
-
Large-area nanoengineering of graphene corrugations for visible-frequency graphene plasmons
Nature Nanotechnology (2022)
-
Efficient plasmonic line-up filter for sensing applications
Optical and Quantum Electronics (2022)
-
Nanoparticle-on-mirror cavity: a historical view across nanophotonics and nanochemistry
Journal of the Korean Physical Society (2022)
-
All-optical information-processing capacity of diffractive surfaces
Light: Science & Applications (2021)