Article | Published:

A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties

Nature Materials volume 2, pages 190195 (2003) | Download Citation

Subjects

Abstract

Interest in metal–organic open-framework structures has increased enormously in the past few years because of the potential benefits of using crystal engineering techniques to yield nanoporous materials with predictable structures and interesting properties. Here we report a new efficient methodology for the preparation of metal–organic open-framework magnetic structures based on the use of a persistent organic free radical (PTMTC), functionalized with three carboxylic groups. Using this approach, we create an open-framework structure Cu3(PTMTC)2(py)6(CH3CH2OH)2(H2O), which we call MOROF-1, combining very large pores (2.8–3.1 nm) with bulk magnetic ordering. MOROF-1 shows a reversible and highly selective solvent-induced 'shrinking–breathing' process involving large volume changes (25–35%) that strongly influence the magnetic properties of the material. This magnetic sponge-like behaviour could be the first stage of a new route towards magnetic solvent sensors.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Open-framework inorganic materials. Angew. Chem. Int. Edn 38, 3269–3292 (1999).

  2. 2.

    , , , & Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc. Chem. Res. 31, 474–484 (1998).

  3. 3.

    Nanoporous structures by design. Angew. Chem. Int. Edn 39, 3052–3054 (2000).

  4. 4.

    , , & A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4'-bipyridine)2}n].Angew. Chem. Int. Edn 12, 2081–2084 (2000).

  5. 5.

    , & A nanoporous metal-organic framework based on bulky phosphane ligands. Angew. Chem. Int. Edn 41, 764–767 (2002).

  6. 6.

    , , & Expanded prussian blue analogues incorporating [Re6Se8(CN)6]3−/4− clusters: adjusting porosity via charge balance. J. Am. Chem. Soc. 123, 8022–8032 (2001).

  7. 7.

    , , , & Noninterpenetrating square-grid coordination polymers with dimensions of 25×25Å2 prepared by using N,N'-type ligands: the first chiral square grid coordination polymer. Angew. Chem. Int. Edn 41, 583–586 (2002).

  8. 8.

    , , , & Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291, 1021–1023 (2001).

  9. 9.

    , , & A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. Angew. Chem. Int. Edn 41, 281–284 (2002).

  10. 10.

    , , , & Resonance in the nonlinear susceptibilities of Co3BTCA2(H2O)4, a molecular-based magnet. J. Solid State Chem. 159, 379–384 (2001).

  11. 11.

    & Open-framework nickel succinate, [Ni7(C4H4O4)6(OH)2(H2O)2]·2H2O: a new hybrid material with three dimensional Ni-O-Ni connectivity. Angew. Chem. Int. Edn 41, 457–459 (2002).

  12. 12.

    , & Supramolecular arrays based on dimetal building units. Acc. Chem. Res. 34, 759–771 (2001).

  13. 13.

    , , & Hydrothermal synthesis, X-ray structure and complex magnetic behaviour of Ba4(C2O4)Cl2[{Fe(C2O4)(OH)}4]. Chem. Eur. J. 7, 200–208 (2001).

  14. 14.

    , , , & A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148–1150 (1999).

  15. 15.

    , , , & Crystal Engineering of a nanoscale Kagomé lattice. Angew. Chem. Int. Edn 41, 2821–2824 (2002).

  16. 16.

    et al. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. J. Am. Chem. Soc. 123, 8329–8247 (2001).

  17. 17.

    et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

  18. 18.

    & Co3[Co(CN)5]2: A microporous magnet with ordering temperature of 38 K. J. Am. Chem. Soc. 124, 12096–12097 (2002).

  19. 19.

    , , , & Molecular magnets hybrid organic-inorganic layered compounds with very long-range ferromagnetism. Coordin. Chem. Rev. 178, 1533–1553 (1998).

  20. 20.

    Inert free radicals: a unique trivalent carbon species. Acc. Chem. Res. 12, 380 (1985).

  21. 21.

    & Catena-triaqua-μ-[1,3,5-benzenetricarboxylato(2-)]-copper(II). Acta Cryst. C 44, 992–994 (1988).

  22. 22.

    , , & Supramolecular isomerism in coordination compounds: nanoscale molecular hexagons and chains. J. Am. Chem. Soc. 124, 9990–9991 (2002).

  23. 23.

    & Self-assembly and selective guest binding of three-dimensional open-framework solids form a macrocyclic complex as a trifunctional metal building block. Chem. Eur. J. 7, 303–313 (2001).

  24. 24.

    & An extremely stable open-framework metal-organic polymer with expandable structure and selective adsorption capability. Chem. Commun. 1340–1341 (2002).

  25. 25.

    et al. Novel flexible frameworks of porous (II) coordination polymers that show selective guest adsorption based on the switching of hydrogen-bond pairs of amide groups. Chem. Eur. J. 8, 3587–3600 (2002).

  26. 26.

    & A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or re-adsorption. Angew. Chem. Int. Edn 41, 3392–3395 (2002).

  27. 27.

    , , , & Coordinatively unsaturated metal centers in the extended porous framework of Zn3(BDC)3·6H2O (BDC=1,4-benzene dicarboxylate). J. Am. Chem. Soc. 120, 2186–2187 (1998).

  28. 28.

    , , , & A very bulky carboxylic perchlorotriphenylmethyl radical as a novel ligand for transition metal complexes. A new spin frustrated metal system. Chem. Commun. 2958–2959 (2002).

  29. 29.

    , , & Magnetic properties of the two-dimensional bimetallic compounds (NBu4)[MIIRuIII(ox)3] (NBu4=Tetra-n-butylammonium; M=Mn, Fe, Cu; ox=oxalate). Inorg. Chem. 37, 679–684 (1998).

  30. 30.

    in Molecular Magnetism (ed. Kahn, O.) 251–332 (VCH, New York, 1993).

  31. 31.

    , , , & Supramolecular interactions and magnetism of metal-radical chains. J. Chem. Soc. Dalton Trans. 2000, 3907–3912 (2000).

  32. 32.

    & in Magnetism: Molecules to Materials Vol. III (eds Miller, J.S. & Drillon, M.) 61–108 (Wiley-VCH, Weinheim, 2001).

Download references

Acknowledgements

This work was supported by the Programa Nacional de Materiales of the Dirección General de Investigación (Spain), under project MAGMOL. D.M. is grateful to the Generalitat de Catalunya for a predoctoral grant. We thank P. Gerbier of the Université Montpellier for TG-MS experiments and X. Alcobé of the Universitat de Barcelona for X-ray powder diffraction measurements.

Author information

Affiliations

  1. Institut de Ciència de Materials de Barcelona (CSIC), Campus Universitari de Bellaterra, 08193 Cerdanyola, Spain

    • Daniel Maspoch
    • , Daniel Ruiz-Molina
    • , Concepció Rovira
    •  & Jaume Veciana
  2. Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

    • Klaus Wurst
  3. Facultad de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

    • Neus Domingo
    •  & Javier Tejada
  4. CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy

    • Massimilliano Cavallini
    •  & Fabio Biscarini

Authors

  1. Search for Daniel Maspoch in:

  2. Search for Daniel Ruiz-Molina in:

  3. Search for Klaus Wurst in:

  4. Search for Neus Domingo in:

  5. Search for Massimilliano Cavallini in:

  6. Search for Fabio Biscarini in:

  7. Search for Javier Tejada in:

  8. Search for Concepció Rovira in:

  9. Search for Jaume Veciana in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jaume Veciana.

Supplementary information

PDF files

  1. 1.

    Figure 1S Magnetization value as a function of the applied field at a temperature of 2.5 K for MOROF-1

    Figure 2S  Reversible magnetic behavior of the amorphous and evacuated phase in contact with ethanol liquid, plot of magnetization value as a function of the applied field at a temperature of 2.5 KFigure 3S  Plots of χ'MT (top) and χ"MT (bottom) as a function of the temperature for MOROF-1 at the indicated frequenciesFigure 4S  χT value as a function of the temperature for MOROF-1Figure 5S  (Left) χT value as a function of the temperature for complex Cu(PTMMC)2(H2O)3.Figure 6S  Powder X-ray diffractogram of MOROF-1 (red) and MOOF-1 (black).Structure The crystal structure of MOROF-1.

Videos

  1. 1.

    Movie 1 This video shows the "shrinking-breathing" process.

  2. 2.

    Movie 2 This video shows the shrinking process of one crystal followed with polarized light.

Image files

  1. 1.

    Movie 3 This video shows the breathing process of one crystal followed with polarized light.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat834