Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties

Abstract

Interest in metal–organic open-framework structures has increased enormously in the past few years because of the potential benefits of using crystal engineering techniques to yield nanoporous materials with predictable structures and interesting properties. Here we report a new efficient methodology for the preparation of metal–organic open-framework magnetic structures based on the use of a persistent organic free radical (PTMTC), functionalized with three carboxylic groups. Using this approach, we create an open-framework structure Cu3(PTMTC)2(py)6(CH3CH2OH)2(H2O), which we call MOROF-1, combining very large pores (2.8–3.1 nm) with bulk magnetic ordering. MOROF-1 shows a reversible and highly selective solvent-induced 'shrinking–breathing' process involving large volume changes (25–35%) that strongly influence the magnetic properties of the material. This magnetic sponge-like behaviour could be the first stage of a new route towards magnetic solvent sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of MOROF-1.
Figure 2: Real images of crystals of MOROF-1 followed with an optical microscope.
Figure 3: Guest exchange studies followed by magnetic and XRPD measurements.
Figure 4: Magnetic properties.

Similar content being viewed by others

References

  1. Cheetham, A.K., Férey, G. & Loiseau, T. Open-framework inorganic materials. Angew. Chem. Int. Edn 38, 3269–3292 (1999).

    Article  Google Scholar 

  2. Yaghi, O.M., Li, H., Davis, C., Richardson, D. & Groy, T.L. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc. Chem. Res. 31, 474–484 (1998).

    Article  CAS  Google Scholar 

  3. Zaworotko, M. Nanoporous structures by design. Angew. Chem. Int. Edn 39, 3052–3054 (2000).

    Article  CAS  Google Scholar 

  4. Noro, S.I., Kitagawa, S., Kondo, M. & Seki, K. A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4'-bipyridine)2}n].Angew. Chem. Int. Edn 12, 2081–2084 (2000).

    Article  Google Scholar 

  5. Xu, X., Nieuwenhuyzen, M. & James, S.L. A nanoporous metal-organic framework based on bulky phosphane ligands. Angew. Chem. Int. Edn 41, 764–767 (2002).

    Article  CAS  Google Scholar 

  6. Bennett, M.V., Beauvais, L.G., Shores, M.P. & Long, J.R. Expanded prussian blue analogues incorporating [Re6Se8(CN)6]3−/4− clusters: adjusting porosity via charge balance. J. Am. Chem. Soc. 123, 8022–8032 (2001).

    Article  CAS  Google Scholar 

  7. Pschirer, N.G., Ciurtin, D.M., Smith, M.D., Bunz, U.H.F. & zur Loye, H.-C. Noninterpenetrating square-grid coordination polymers with dimensions of 25×25Å2 prepared by using N,N'-type ligands: the first chiral square grid coordination polymer. Angew. Chem. Int. Edn 41, 583–586 (2002).

    Article  CAS  Google Scholar 

  8. Chen, B., Eddaoudi, M., Hyde, S.T., O'Keefe, M. & Yaghi, O.M. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291, 1021–1023 (2001).

    Article  CAS  Google Scholar 

  9. Barthelet, K., Marrot, J., Riou, D. & Férey, G. A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. Angew. Chem. Int. Edn 41, 281–284 (2002).

    Article  CAS  Google Scholar 

  10. Wynn, C.M., Albrecht, A.S., Landee, C.P., Turnbull, M.M. & Dodrill, B. Resonance in the nonlinear susceptibilities of Co3BTCA2(H2O)4, a molecular-based magnet. J. Solid State Chem. 159, 379–384 (2001).

    Article  CAS  Google Scholar 

  11. Forster, P.M. & Cheetham, A.K. Open-framework nickel succinate, [Ni7(C4H4O4)6(OH)2(H2O)2]·2H2O: a new hybrid material with three dimensional Ni-O-Ni connectivity. Angew. Chem. Int. Edn 41, 457–459 (2002).

    Article  CAS  Google Scholar 

  12. Cotton, F.A., Lin, C. & Murillo, C.A. Supramolecular arrays based on dimetal building units. Acc. Chem. Res. 34, 759–771 (2001).

    Article  CAS  Google Scholar 

  13. Price, D.J., Tripp, S., Powell, A.K. & Wood, P.T. Hydrothermal synthesis, X-ray structure and complex magnetic behaviour of Ba4(C2O4)Cl2[{Fe(C2O4)(OH)}4]. Chem. Eur. J. 7, 200–208 (2001).

    Article  CAS  Google Scholar 

  14. Chui, S.S.-Y., Lo, S.M.-F., Charmant, J.P.H., Orpen, A.G. & Williams, I.D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    Article  CAS  Google Scholar 

  15. Moulton, B., Lu, J., Hajndl, R., Hariharan, S & Zaworotko, M.J. Crystal Engineering of a nanoscale Kagomé lattice. Angew. Chem. Int. Edn 41, 2821–2824 (2002).

    Article  CAS  Google Scholar 

  16. Kim, J. et al. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. J. Am. Chem. Soc. 123, 8329–8247 (2001).

    Article  Google Scholar 

  17. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  18. Beauvais, L.G. & Long, J.R. Co3[Co(CN)5]2: A microporous magnet with ordering temperature of 38 K. J. Am. Chem. Soc. 124, 12096–12097 (2002).

    Article  CAS  Google Scholar 

  19. Laget, V., Hornick, C., Rabu, P., Drillon, M. & Ziessel, R. Molecular magnets hybrid organic-inorganic layered compounds with very long-range ferromagnetism. Coordin. Chem. Rev. 178, 1533–1553 (1998).

    Article  Google Scholar 

  20. Ballester, M. Inert free radicals: a unique trivalent carbon species. Acc. Chem. Res. 12, 380 (1985).

    Article  Google Scholar 

  21. Pech, R. & Pickardt, J. Catena-triaqua-μ-[1,3,5-benzenetricarboxylato(2-)]-copper(II). Acta Cryst. C 44, 992–994 (1988).

    Article  Google Scholar 

  22. Abourahma, H., Moulton, B., Kravtsov, V. & Zaworotko, M.J. Supramolecular isomerism in coordination compounds: nanoscale molecular hexagons and chains. J. Am. Chem. Soc. 124, 9990–9991 (2002).

    Article  CAS  Google Scholar 

  23. Min, K.S. & Suh, M.P. Self-assembly and selective guest binding of three-dimensional open-framework solids form a macrocyclic complex as a trifunctional metal building block. Chem. Eur. J. 7, 303–313 (2001).

    Article  CAS  Google Scholar 

  24. Lu, J.Y. & Babb, A.M. An extremely stable open-framework metal-organic polymer with expandable structure and selective adsorption capability. Chem. Commun. 1340–1341 (2002).

  25. Kitagawa, S. et al. Novel flexible frameworks of porous (II) coordination polymers that show selective guest adsorption based on the switching of hydrogen-bond pairs of amide groups. Chem. Eur. J. 8, 3587–3600 (2002).

    Google Scholar 

  26. Biradha, K. & Fujita, M. A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or re-adsorption. Angew. Chem. Int. Edn 41, 3392–3395 (2002).

    Article  CAS  Google Scholar 

  27. Li, H., Davis, C.E., Groy, T.L., Kelley, D.G. & Yaghi, O.M. Coordinatively unsaturated metal centers in the extended porous framework of Zn3(BDC)3·6H2O (BDC=1,4-benzene dicarboxylate). J. Am. Chem. Soc. 120, 2186–2187 (1998).

    Article  CAS  Google Scholar 

  28. Maspoch, D., Ruiz-Molina, D., Wurst, K., Rovira, C. & Veciana, J. A very bulky carboxylic perchlorotriphenylmethyl radical as a novel ligand for transition metal complexes. A new spin frustrated metal system. Chem. Commun. 2958–2959 (2002).

  29. Larionova, J., Mombelli, B., Sanchiz, J. & Kahn, O. Magnetic properties of the two-dimensional bimetallic compounds (NBu4)[MIIRuIII(ox)3] (NBu4=Tetra-n-butylammonium; M=Mn, Fe, Cu; ox=oxalate). Inorg. Chem. 37, 679–684 (1998).

    Article  CAS  Google Scholar 

  30. Kahn, O. in Molecular Magnetism (ed. Kahn, O.) 251–332 (VCH, New York, 1993).

    Google Scholar 

  31. Caneschi, A., Gatteschi, D., Lalioti, N., Sangregorio, C. & Sessoli, R. Supramolecular interactions and magnetism of metal-radical chains. J. Chem. Soc. Dalton Trans. 2000, 3907–3912 (2000).

    Article  Google Scholar 

  32. Ivamura, H. & Inoue, K. in Magnetism: Molecules to Materials Vol. III (eds Miller, J.S. & Drillon, M.) 61–108 (Wiley-VCH, Weinheim, 2001).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Programa Nacional de Materiales of the Dirección General de Investigación (Spain), under project MAGMOL. D.M. is grateful to the Generalitat de Catalunya for a predoctoral grant. We thank P. Gerbier of the Université Montpellier for TG-MS experiments and X. Alcobé of the Universitat de Barcelona for X-ray powder diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Veciana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Figure 1S Magnetization value as a function of the applied field at a temperature of 2.5 K for MOROF-1

Figure 2S Reversible magnetic behavior of the amorphous and evacuated phase in contact with ethanol liquid, plot of magnetization value as a function of the applied field at a temperature of 2.5 K (PDF 891 kb)

Figure 3S Plots of χ'MT (top) and χ"MT (bottom) as a function of the temperature for MOROF-1 at the indicated frequencies

Figure 4S χT value as a function of the temperature for MOROF-1

Figure 5S (Left) χT value as a function of the temperature for complex Cu(PTMMC)2(H2O)3.

Figure 6S  Powder X-ray diffractogram of MOROF-1 (red) and MOOF-1 (black).

Structure The crystal structure of MOROF-1.

Movie 1 This video shows the "shrinking-breathing" process. (AVI 745 kb)

Movie 2 This video shows the shrinking process of one crystal followed with polarized light. (AVI 2002 kb)

Movie 3 This video shows the breathing process of one crystal followed with polarized light. (GIF 2403 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maspoch, D., Ruiz-Molina, D., Wurst, K. et al. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nature Mater 2, 190–195 (2003). https://doi.org/10.1038/nmat834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing