Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods

A Corrigendum to this article was published on 01 January 2004


Dimensionality and size are two factors that govern the properties of semiconductor nanostructures1,2. In nanocrystals, dimensionality is manifested by the control of shape, which presents a key challenge for synthesis3,4,5. So far, the growth of rod-shaped nanocrystals using a surfactant-controlled growth mode, has been limited to semiconductors with wurtzite crystal structures, such as CdSe (ref. 3). Here, we report on a general method for the growth of soluble nanorods applied to semiconductors with the zinc-blende cubic lattice structure. InAs quantum rods with controlled lengths and diameters were synthesized using the solution–liquid–solid mechanism6 with gold nanocrystals as catalysts7. This provides an unexpected link between two successful strategies for growing high-quality nanomaterials, the vapour–liquid–solid approach for growing nanowires8,9,10,11,12, and the colloidal approach for synthesizing soluble nanocrystals13,14,15. The rods exhibit both length- and shape-dependent optical properties, manifested in a red-shift of the bandgap with increased length, and in the observation of polarized emission covering the near-infrared spectral range relevant for telecommunications devices16,17.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: TEM images of the reaction products.
Figure 2: Size-distribution histograms for InAs quantum rods.
Figure 3: Powder X-ray diffraction patterns of the reaction products.
Figure 4: Length-dependent optical properties of InAs semiconductor quantum rods.


  1. 1

    Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Banin, U., Cao, Y.W., Katz, D. & Millo, O. Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. Nature 400, 542–544 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Peng, X.G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Tang, Z.Y., Kotov, N.A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Pacholski, C., Kornowski, A. & Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Edn 41, 1188–1191 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Trentler, T.J. et al. Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-solid-liquid growth. Science 270, 1791–1794 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Holmes, J.D., Johnston, K.P., Doty, R.C. & Korgel, B.A. Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471–1473 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Morales, A.M. & Lieber, C.M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Duan, X.F. & Lieber, C.M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Gudiksen, M.S., Wang, J.F. & Lieiber, C.M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105, 4062–4064 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Huang, M.H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Johnson, J.C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Murray, C.B., Norris, D.J. & Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Guzelian, A.A., Banin, U., Kadavanich, A.V., Peng, X. & Alivisatos, A.P. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 69, 1432–1434 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Murray, C.B. et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47–55 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Tessler, N., Medvedev, V., Kazes, M., Kan, S.H. & Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 (2002).

    Article  Google Scholar 

  17. 17

    Wang, J.F., Gudiksen, M.S., Duan, X.F., Cui, Y. & Lieber, C.M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Hu, J.T. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Kazes, M., Lewis, D.Y., Ebenstein, Y., Mokari, T. & Banin, U. Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317–321 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Huynh, W.U., Dittmer, J.J. & Alivisatos, A.P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Puntes, V.F., Krishnan, K.M. & Alivisatos, A.P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 291, 2115–2117 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Wagner, R.S. in Whisker Technology (ed. Levitt, A.P.) 47–119 (Wiley-Interscience, New York, 1970).

    Google Scholar 

  23. 23

    Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Chan, W.C.W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Cao, Y.W.C., Jin, R.C. & Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Colvin, V.L., Schlamp, M.C. & Alivisatos, A.P. Light-emitting diodes made from cadmium selenide. Nature 370, 354–357 (1994).

    CAS  Article  Google Scholar 

  27. 27

    Klimov, V.I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. & Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 801 (1994).

  29. 29

    Dick, K., Dhanasekaran, T., Zhang, Z. & Meisel, D. Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Cleveland, C.L., Luedtke, W.D. & Landman, U. Melting of gold clusters: Icosahedral precursers. Phys. Rev. Lett. 81, 2036–2039 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Cleveland, C.L., Luedtke, W.D. & Landman, U. Melting of gold clusters. Phys. Rev. B 60, 5065–5077 (1999).

    CAS  Article  Google Scholar 

  32. 32

    Katz, D. et al. Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys. Rev. Lett. 89, 086801 (2002).

    Article  Google Scholar 

  33. 33

    Li, L.S., Hu, J.T., Yang, W.D. & Alivisatos, A.P. Bandgap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 1, 349–351 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Efros, Al.L. & Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 465–521 (2000).

    Article  Google Scholar 

Download references


Supported in part by the Deutsche–Israel Program, the Israel Science Foundation and the US–Israel Binational Science Foundation. We are grateful to Vladimir Ezersky for assistance in the HRTEM measurements.

Author information



Corresponding author

Correspondence to Uri Banin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kan, S., Mokari, T., Rothenberg, E. et al. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nature Mater 2, 155–158 (2003).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing