Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands

Abstract

In applications as diverse as fibre-optic communications and time-domain or terahertz spectroscopy, researchers are keen on ultrafast optoelectronic transducers that can be tailored to specific needs. The molecular beam epitaxy of photoconductors composed of equidistant layers of self-assembled ErAs-islands in a III–V semiconductor matrix, which act as efficient non-radiative carrier capture sites, enables this flexibility. Here, photocurrent autocorrelation techniques are applied to metal–semiconductor–metal photodetectors patterned on ErAs:GaAs superlattices. The experiments demonstrate that the electrical response speed can be conveniently tuned over at least two orders of magnitude starting from 190 fs by increasing the thickness of the GaAs spacer separating adjacent ErAs layers. The same concept is applied to the narrower bandgap InGaAs matrix. We demonstrate an electron lifetime of approximately 1 ps for this material. This brings closer the prospect of implementing terahertz technology at the important optical communication wavelengths of 1.3 and 1.55 μm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 3: Lifetime of the photoexcited mobile electrons τe as a function of the ErAs:GaAs superlattice period L (right axis, solid symbols).
Figure 4: Current–voltage characteristics of the photoconductive switches when illuminated and in the dark.
Figure 1: Nonlinear behaviour of the photocurrent and optical set-up for temporal carrier density autocorrelation measurements.
Figure 2: Photocurrent autocorrelation measurement on a 60-nm ErAs:GaAs superlattice and the polarization-dependent transmission properties of the metal–semiconductor–metal geometry.
Figure 5: Device structure of and lifetime measurements on 40 nm period ErAs:InGaAs samples.

Similar content being viewed by others

References

  1. Verghese, S. et al. Generation and detection of coherent terahertz waves using two photomixers. Appl. Phys. Lett. 73, 3824–3826 (1998).

    Article  CAS  Google Scholar 

  2. McIntosh, K.A. et al. Terahertz photomixing with diode lasers in low-temperature-grown GaAs. Appl. Phys. Lett. 67, 3844–3846 (1995).

    Article  CAS  Google Scholar 

  3. Kadow, C., Jackson, A.W., Gossard, A.C., Matsuura, S. & Blake, G.A. Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation. Appl. Phys. Lett. 76, 3510–3512 (2000).

    Article  CAS  Google Scholar 

  4. Grischkowsky, D., Keiding, S., van Exter, M. & Fattinger, C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006–2015 (1990).

    Article  CAS  Google Scholar 

  5. Verghese, S., McIntosh, K.A. & Brown, E.R. Highly tunable fibre-coupled photomixers with coherent terahertz output power. IEEE Trans. Microwave Theory 45, 1301–1309 (1997).

    Article  Google Scholar 

  6. Chen, P. et al. Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs. Appl. Phys. Lett. 71, 1601–1603 (1997).

    Article  CAS  Google Scholar 

  7. Auston, D.H. Impulse response of photoconductors in transmission lines. IEEE J. Quantum Electron. 19, 639–648 (1983).

    Article  Google Scholar 

  8. Paulter, N.G., Sinha, D.N., Gibbs, A.J. & Eisenstadt, W.R. Optoelectronic measurements of picosecond electrical pulse propagation in coplanar waveguide transmission lines. IEEE Trans. Microwave Theory 37, 1612–1619 (1989).

    Article  Google Scholar 

  9. David, G. et al. Absolute potential measurements inside microwave digital IC's using a micromachined photoconductive sampling probe. IEEE Trans. Microwave Theory 46, 2330–2337 (1998).

    Article  Google Scholar 

  10. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002).

    Article  CAS  Google Scholar 

  11. Kordoš, P., Förster, A., Marso, M. & Rüders, F. 550 GHz bandwidth photodetector on low temperature grown molecular-beam epitaxial GaAs. Electron. Lett. 34, 119–120 (1998).

    Article  Google Scholar 

  12. Burm, J. et al. High-frequency, high-efficiency MSM photodetectors. IEEE J. Quantum Electron. 31, 1504–1509 (1995).

    Article  CAS  Google Scholar 

  13. Fay, P. et al. A comparative study of integrated photoreceivers using MSM/HEMT and PIN/HEMT technologies. IEEE Photon. Technol. Lett. 10, 582–584 (1998).

    Article  Google Scholar 

  14. Das, N.R., Basu, P.K. & Deen, M.J., A new approach to the design optimization of HEMT and HBT for maximum gain-bandwidth of MSM-based integrated photoreceiver and its noise performance at 1.55 μm. IEEE Trans. Electron Dev. 47, 2101–2109 (2000).

    Article  Google Scholar 

  15. Kadow, C. et al. Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics. Appl. Phys. Lett. 75, 3548–3550 (1999).

    Article  CAS  Google Scholar 

  16. Kadow, C., Johnson, J.A., Kolstad, K., Ibbetson, J.P. & Gossard, A.C. Growth and microstructure of self-assembled ErAs islands in GaAs. J. Vac. Sci. Technol. B 18, 2197–2203 (2000).

    Article  CAS  Google Scholar 

  17. Look, D.C. Molecular beam epitaxial GaAs grown at low temperatures. Thin Solid Films 231, 61–73 (1993).

    Article  CAS  Google Scholar 

  18. Gupta, S., Whitaker, J.F. & Mourou, G.A. Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE J. Quantum Electron. 28, 2464–2472 (1992).

    Article  CAS  Google Scholar 

  19. Driscoll, D.C., Hanson, M., Kadow, C. & Gossard, A.C. Electronic structure and conduction in a metal-semiconductor digital composite: ErAs:InGaAs. Appl. Phys. Lett. 78, 1703–1705 (2001).

    Article  CAS  Google Scholar 

  20. Driscoll, D.C., Hanson, M., Kadow, C. & Gossard, A.C. Transition to insulating behavior in the metal-semiconductor digital composite ErAs:InGaAs. J. Vac. Sci. Technol. B 19, 1631–1634 (2001).

    Article  CAS  Google Scholar 

  21. Pašiškevicius, V., Deringas, A. & Krotkus, A. Photocurrent nonlinearities in ultrafast optoelectronic switches. Appl. Phys. Lett. 63, 2237–2239 (1993).

    Article  Google Scholar 

  22. Jacobsen, R.H., Birkelund, K., Holst, T., Jepsen, P.U. & Keiding, S.R. Interpretation of photocurrent correlation measurements used for ultrafast photoconductive switch characterization. J. Appl. Phys. 79, 2649–2657 (1996).

    Article  CAS  Google Scholar 

  23. Brorson, S.D., Zhang, J. & Keiding, S.R. Ultrafast carrier trapping and slow recombination in ion-bombarded silicon on sapphire measured via THz spectroscopy. Appl. Phys. Lett. 64, 2385–2387 (1994).

    Article  CAS  Google Scholar 

  24. Iverson, A.E. & Smith, D.L. Mathematical modelling of photoconductor transient response. IEEE Trans. Electron Dev. 34, 2098–2107 (1987)

    Article  Google Scholar 

  25. Grigoras, K., Krotkus, A. & Deringas, A. Picosecond lifetime measurement in semiconductor by optoelectronic autocorrelation. Electron. Lett. 27, 1024–1025 (1991).

    Article  Google Scholar 

  26. Chen, Y., Williamson, S. & Brock, T. 375-GHz-bandwidth photoconductive detector. Appl. Phys. Lett. 59, 1984–1986 (1991).

    Article  CAS  Google Scholar 

  27. Kuta, J.J., v an Driel, H.M., Landheer, D. & Adams, J.A. Polarization and wavelength dependence of metal-semiconductor-metal photodetector response. Appl. Phys. Lett. 64, 140–142 (1994).

    Article  CAS  Google Scholar 

  28. Kuta, J.J., van Driel, H.M., Landheer, D. & Feng, Y. Polarization dependence of the temporal response of metal-semiconductor-metal photodetectors. Appl. Phys. Lett. 65, 3146–3148 (1994).

    Article  CAS  Google Scholar 

  29. Carruthers, T.F. & Weller, J.F. Picosecond optical mixing in fast photodetectors. Appl. Phys. Lett. 48, 460–462 (1986).

    Article  Google Scholar 

  30. Shockley, W. & Read, W.T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  CAS  Google Scholar 

  31. Hall, R.N. Electron-hole recombination in germanium. Phys. Rev. 87, 387 (1952).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. R. Gerhardts for help with the theoretical description of the experiments. They also acknowledge R. A. Wyss for discussions and M.-H. Stapleton for assistance during the experiments. This research has been supported by the German Science Foundation, the Jet Propulsion Laboratory and QUEST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurgen H. Smet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griebel, M., Smet, J., Driscoll, D. et al. Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands. Nature Mater 2, 122–126 (2003). https://doi.org/10.1038/nmat819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing