Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals

Abstract

In the past decade, colloidal solutions have been assumed to be very efficient templates for controlling particle size and shape. A large number of groups have used reverse micelles to control the size of spherical nanoparticles. This makes it possible to determine the various parameters involved in such processes, and demonstrates that nanoparticles can be considered to be efficient nanoreactors. However, some discrepancies arise. There are few reports concerning the control of particle shape, and it is still rather difficult to determine the key parameters, such as the adsorption of salts and other molecules, and the synthesis procedure. Here, we discuss these controls of the size and shape of inorganic nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surfactant shapes and various self-assemblies in colloidal solution.
Figure 2: The different shapes of copper nanocrystals produced in colloidal self-assemblies of surfactant-H2O-isoctane solution.
Figure 3: Silver nanocrystals made in reverse micellar solution.
Figure 4: Various shapes of copper nanocrystals produced in interconnected cylinders in the presence of different salt ions having the same concentration.
Figure 5: Nanodisks.

Similar content being viewed by others

References

  1. Heath, J.R. Nanoscale materials. Acc. Chem. Res. 32, 388–388 (1999).

    Article  CAS  Google Scholar 

  2. Vollath, D., Szabo, D.V., Taylor, R.D. & Willis, J.O. Synthesis and magnetic properties of nanostructured maghemite. J. Mat. Res. 12, 2175–2182 (1997).

    Article  CAS  Google Scholar 

  3. Perez, A. et al. Nanostructured materials from clusters: synthesis and properties. Mater. Trans. 42, 1460–1470 (2001).

    Article  CAS  Google Scholar 

  4. Murray, C.B., Norris, D.J. & Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  5. Pileni, M.P. Reverse micelles: a microreactor. J. Phys. Chem. 97, 9661–9668 (1993).

    Article  Google Scholar 

  6. Pileni, M.P. Nanosized particles made in colloidal assemblies. Langmuir 13, 3266–3276 (1997).

    Article  CAS  Google Scholar 

  7. Pileni, M.P. Mesostructured fluids in oil rich region: Structural and templating approaches. Langmuir 17, 7476–7486 (2001).

    Article  CAS  Google Scholar 

  8. Cepak, V.M. & Martin, C.R. Preparation and stability of template synthesized metal nanorod sols in organic solvents. J. Phys. Chem. 102, 9985–9990 (1998).

    Article  CAS  Google Scholar 

  9. Molares, M.E.T. et al. Single crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membrane. Adv. Mater. 13, 62–65 (2001).

    Article  CAS  Google Scholar 

  10. Namatsu, H., Kurihara, K., Nagase, M. & Makino, T. Fabrication of 2-nm wide silicon quantum wires through a combination of a partially shifted resist pattern and orientation dependent etching. Appl. Phys. Lett. 70, 619–621 (1997).

    Article  CAS  Google Scholar 

  11. Wang, J., Thomson, D.A., Robinson, B.J. & Simmons, J.G. Molecular beam epitaxial growth of InGaAs/InGaAsP quantum wires on V-grooved InP substrates with (111) sidewalls. J. Cryst. Growth 175, 793–798 (1997).

    Article  Google Scholar 

  12. Nepojko, S.A., Levlev, D.N., Schulze, W., Urban, J. & Ertl, G. Growth of rodlike silver nanoparticles by vapor deposition of small clusters. Chem. Phys. Chem. 140–142 (2000).

  13. Yu, Y.Y., Chang, S.S., Lee C.L. & Wang, C.R. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661–6664 (1997).

    Article  CAS  Google Scholar 

  14. Huang, L. et al. Nanowires arrays electrodeposited from liquid crystalline phases. Adv. Mater. 14, 61–64 (2002).

    Article  CAS  Google Scholar 

  15. Wang, Z.L., Gao, R.P., Nikoobakht, B. & El Sayed, M.A. Surface reconstruction of unstable [110] surface in gold nanorods. J. Phys. Chem. B 104, 5417–5420 (2000).

    Article  CAS  Google Scholar 

  16. Evans, D.F., Mitchell D.J. & Ninham, B.W. Oil, water and surfactant: properties and conjectured structure of simple microemulsions. J. Phys. Chem. 90, 2817–2825, (1986).

    Article  CAS  Google Scholar 

  17. Pileni, M.P. (ed.) Reverse micelles (Elsevier, Amsterdam, 1989).

    Google Scholar 

  18. Pileni, M.P., Zemb, T. & Petit, C. Solubilization by reverse micelles: Solute localization and structure perturbation. Chem. Phys. Lett. 118, 414–420 (1985).

    Article  CAS  Google Scholar 

  19. The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology (eds Hyde, S. et al.) (Elsevier, Oxford, 1997).

  20. André, P. et al. Supra-aggregation: Microphase formation in complex fluids. Adv. Mater. 12, 119–123 (2000).

    Article  Google Scholar 

  21. Petit, C. & Pileni, M.P. Synthesis of cadmium sulfide in situ in reverse micelles and hydrocarbon gels. J. Phys. Chem. 92, 2282–2286 (1988).

    Article  CAS  Google Scholar 

  22. Ingert, D. & Pileni, M.P. Limitation in producing nanomaterials by using reverse micelles as nanoreactors. Adv. Funct. Mater. 11, 136–139 (2001).

    Article  CAS  Google Scholar 

  23. Weller, H. Colloidal semiconductor q particles: Chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Edn Engl. 32, 41–53 (1993).

    Article  Google Scholar 

  24. Courty, A., Lisiecki, I. & Pileni, M.P. Vibration of self-organized silver nanocrystals. J. Chem. Phys. 116, 8074–8078 (2002).

    Article  CAS  Google Scholar 

  25. Pileni, M.P. II-VI Semiconductors made by solf chemistry: Syntheses and optical properties. Catal. Today 58, 151–166 (2000).

    Article  CAS  Google Scholar 

  26. Agnoli, F. Zhou, W.L. & O'Connor, C.J. Synthesis of cubic antiferromagnetic KMnF3 Nanoparticles using reverse micelles and their assembly. Adv. Mater. 13, 1697–1699 (2001).

    Article  CAS  Google Scholar 

  27. Pinna, N., Weiss, K., Urban, J. & Pileni, M.P. Triangular CdS nanocrystals: Structure and optical Properties. Adv. Mater. 13, 261–264 (2001).

    Article  CAS  Google Scholar 

  28. Hopwood, J.D. & Mann, S. Synthesis of barium nanoparticles and nanofilament in reverse micelles and microemulsions. Chem. Mater. 9, 1819–1828 (1997).

    Article  CAS  Google Scholar 

  29. Li, M. Schnablegger, H. & Mann, S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393–396 (1999).

    Article  CAS  Google Scholar 

  30. Rees, G.D., Evans-Gowing, R., Hammond, S.J. & Robinson, B.H. Formation and morphology of calcium sulfate nanoparticles and nanowires in water in oil microemulsions. Langmuir 15, 1993–2002, (1999).

    Article  CAS  Google Scholar 

  31. Qi, L., Ma, J., Cheng, H. & Zhao, Z. Reverse micelles based formation of BaCO3 Nanowires. J. Phys. Chem. B 101, 3460–3463 (1997).

    Article  CAS  Google Scholar 

  32. Filankembo, A. et al. Mesostructured fluids: supra aggregates made of interdigitated reverse micelles. Colloids Surf. A 174, 221–232 (2000).

    Article  CAS  Google Scholar 

  33. Lisiecki, I. et al. Structural investigations of copper nano-rods by HRTEM. Phys. Rev. B 61, 4968–4974 (2000).

    Article  CAS  Google Scholar 

  34. Simmons, B.A. et al. Morphology of CdS nanocrystals synthesized in mixed surfactant systems. Nanolett. 2, 263–268 (2002).

    Article  CAS  Google Scholar 

  35. Scartazzini, R. & Luisi, P. Organogels from lecithins. J. Phys. Chem. 92, 829–933, (1988).

    Article  CAS  Google Scholar 

  36. Filankembo, A. & Pileni, M.P. Is the template of self-colloidal assemblies the only factor which controls nanocrystals shapes? J. Phys. Chem. B 104, 5865–5868 (2000).

    Article  CAS  Google Scholar 

  37. Tanori, J. & Pileni, M.P. Change in the shape of copper nanoparticles in ordered phases. Adv. Mater. 7, 862–864 (1995).

    Article  CAS  Google Scholar 

  38. Chen, C.C. & Lin, J.J. Controlled growth of cubic cadmium sulfide nanoparticles using patterned self-assembled monolayers as template. Adv. Mater. 13, 136–139 (2001).

    Article  CAS  Google Scholar 

  39. Henglein, A. & Giersig. M. Reduction of Pt(II) by H2: Effects of citrate and NaOH and chemical mechanism. J. Phys. Chem. 104, 6767–6772 (2000).

    Article  CAS  Google Scholar 

  40. Ahmadi, T.S., Wang, Z.L., Heinglein, A. & El Sayed, M.A. Cubic colloidal platinium nanoparticles. Chem. Mater. 8, 1161–1163 (1996).

    Article  CAS  Google Scholar 

  41. Esumi, K., Matsuhira, K. & Torigoe, K. Preparation of rodlike gold particles by UV irradiation using cationic micelles as template. Langmuir 11, 3285–3287 (1995).

    Article  CAS  Google Scholar 

  42. Maillard, M., Giorgio, S. & Pileni, M.P. Silver nanodisks. Adv. Mater. 14, 1084–1086, (2002).

    Article  CAS  Google Scholar 

  43. Maillard, M., Giorgio, S. & Pileni, M.P. Tuning the size of silver nanodisks with similar aspect ratio: synthesis and optical properties. J. Phys. Chem. B (in the press).

  44. Li, Y., Ding, Y. & Wang, Z. Novel route to ZnTe semiconductor nanorods. Adv. Mater. 11, 847–850 (1999).

    Article  CAS  Google Scholar 

  45. Li, Y. et al. Solvothermal elemental direct reaction to CdE (E= S, Se, Te) semiconductor nanorod. Inorg. Chem. 38, 1382–1387 (1999).

    Article  CAS  Google Scholar 

  46. Wang, S. & Yang, S. Preparation and characterization of oriented PbS crystalline nanorods in polymer films. Langmuir 16, 389–397 (2000).

    Article  CAS  Google Scholar 

  47. Manna, L., Scher, E.C. & Alivisatos, A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).

    Article  CAS  Google Scholar 

  48. Puntes, V.F., Kristhnan, K.M. & Alivisatos, A.P. Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2118 (2001).

    Article  CAS  Google Scholar 

  49. Park, S.J. et al. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122, 8581–8582 (2000).

    Article  CAS  Google Scholar 

  50. Jana, N.R. Gearheart, L. & Murphy, C. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun. 617–618 (2001).

  51. Jana, N.R. Gearheart, L. & Murphy, C.J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001).

    Article  CAS  Google Scholar 

  52. Boistelle, R. in Industrial Crystallization (ed. Mullin, J.W.) 203–214 (Plenum, New York 1976).

    Book  Google Scholar 

  53. Pileni, M.P. Ferrite magnetic fluids: A new fabrication method and magnetic properties of nanocrystals differing by their size and composition. Adv. Funct. Mater. 11, 323–333 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pileni, MP. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater 2, 145–150 (2003). https://doi.org/10.1038/nmat817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing