Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa

Abstract

Dislocation-based deformation in crystalline solids is almost always plastic. Here we show that polycrystalline samples of Ti3SiC2 loaded cyclically at room temperature, in compression, to stresses up to 1 GPa, fully recover on the removal of the load, while dissipating about 25% (0.7 MJ m−3) of the mechanical energy. The stress–strain curves outline fully reversible, rate-independent, closed hysteresis loops that are strongly influenced by grain size, with the energy dissipated being significantly larger in the coarse-grained material. At temperatures greater than 1,000 °C, the loops are open, the response is strain-rate dependent, and cyclic hardening is observed. This hitherto unreported phenomenon is attributed to the reversible formation and annihilation of incipient kink bands at room-temperature deformation. At higher temperatures, the incipient kink bands dissociate and coalesce to form regular irreversible kink bands. The loss factor for Ti3SiC2 is higher than most woods, and comparable to polypropylene and nylon. The technological implications of having a stiff, lightweight machinable ceramic that can dissipate up to 25% of the mechanical energy per cycle are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kink-band formation.
Figure 2: Stress–strain curves at room temperature for fine and coarse-grained Ti3SiC2, Al2O3 and Al.
Figure 3: Cyclic loading for coarse-grain and fine-grain samples.
Figure 4: The dependence of the dissipation energy, Wd, on temperature and stress.

Similar content being viewed by others

References

  1. Barsoum, M.W. The MN+1AXN phases: A new class of solids: thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000).

    Article  CAS  Google Scholar 

  2. Nowotny, H. Struktuchemie Einiger Verbindungen der Ubergangsmetalle mit den elementen C, Si, Ge, Sn. Prog. Solid State Chem. 2, 27 (1970).

    Article  Google Scholar 

  3. Pietzka, M.A. & Schuster, J.C. Summary of constitution data of the system Al-C-Ti. J. Phase Equilib. 15, 392–400 (1994).

    Article  CAS  Google Scholar 

  4. Rawn, C.J. et al. Structure of Ti4AlN3−x- a layered Mn+1AXn nitride. Mater. Res. Bull. 35, 1785–1796 (2000).

    Article  CAS  Google Scholar 

  5. Barsoum, M.W. & El-Raghy, T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2 . J. Am. Ceram. Soc. 79, 1953–1956 (1996).

    Article  CAS  Google Scholar 

  6. Pampuch, R., Lis, J., Stobierski, L. & Tymkiewicz, M. Solid combustion synthesis of Ti3SiC2 . J. Eur. Ceram. Soc. 5, 283–287 (1989).

    Article  CAS  Google Scholar 

  7. Finkel, P., Barsoum, M.W. & El-Raghy, T. Low temperature dependencies of the elastic properties of Ti3Al1.1C1.8, Ti4AlN3 & Ti3SiC2 . J. Appl. Phys. 87, 1701–1703 (2000).

    Article  CAS  Google Scholar 

  8. Gilbert C.J. et al. Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2 . Scripta Mater. 42, 761–767 (2000).

    Article  CAS  Google Scholar 

  9. Radovic, M., Barsoum, M.W., El-Raghy, T. & Wiederhorn, S. Tensile creep of fine-grained (3–5 μm) Ti3SiC2 in the 1000–1200 °C temperature range. Acta Mater. 49, 4103–4112 (2001).

    Article  CAS  Google Scholar 

  10. Radovic, M., Barsoum, M.W., El-Raghy, T., Wiederhorn, S. & Luecke, W. Effect of temperature, strain rate and grain size on the mechanical response of Ti3SiC2 in tension. Acta Mater. 50 1297–1306 (2002).

    Article  CAS  Google Scholar 

  11. Farber, L., Levin, I. & Barsoum, M.W. HRTEM study of a low-angle boundary in plastically deformed Ti3SiC2 . Phil. Mag. Lett. 79, 163–170 (1999).

    Article  CAS  Google Scholar 

  12. Barsoum, M.W., Farber, L. & El-Raghy, T. Dislocations, kink banks and room temperature plasticity of Ti3SiC2 . Metall. Mater. Trans. A 30, 1727–1738 (1999).

    Article  Google Scholar 

  13. Barsoum, M.W. & El-Raghy, T. Room temperature ductile carbides. Metall. Mater. Trans. A 30, 363–369 (1999).

    Article  Google Scholar 

  14. El-Raghy, T. & Barsoum, M.W. Processing and mechanical properties of Ti3SiC2: Part I: Reaction path and microstructure evolution. J. Am. Ceram. Soc. 82, 2849–54 (1999).

    Article  CAS  Google Scholar 

  15. El-Raghy, T., Barsoum, M.W., Zavaliangos, A. & Kalidindi, S.R. Processing and mechanical properties of Ti3SiC2: II, Effect of grain size and deformation temperature. J. Am. Ceram. Soc. 82, 2855–2860 (1999).

    Article  CAS  Google Scholar 

  16. Li, J–F., Pan, W., Sato, F. & Watanabe, R. Mechanical properties of polycrystalline Ti3SiC2 at ambient and elevated temperatures. Acta. Mater. 49, 937–945 (2001).

    Article  CAS  Google Scholar 

  17. Orowan, E. A type of plastic deformation new in metals. Nature 149, 463–464 (1942).

    Google Scholar 

  18. Hess, J.B. & Barrett, C.S. Structure and nature of kink bands in zinc. Trans. Am. Inst. Min. Eng. 185, 599–606 (1949).

    Google Scholar 

  19. Frank, F.C. & Stroh, A.N. On the theory of kinking. Proc. Phys. Soc. 65, 811–821 (1952).

    Article  Google Scholar 

  20. Nowick, A.S. & Berry, B.S. Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972).

    Google Scholar 

  21. Schaller, R., Fantozzi, G. & Gremaud, G. (eds) Mechanical Spectroscopy 2001 (Trans. Tech., Zürich, Switzerland, 2001).

    Google Scholar 

  22. Roberts, J.M. & Brown, N. Low frequency friction in zinc single crystals. Acta. Metall. 10, 430–441 (1962).

    Article  CAS  Google Scholar 

  23. Washburn, J. & Roper, E.R. Kinking in Zn single crystal tension specimens. J. Metals 1076–1078 (1952).

  24. El-Danaf, E., Kalidindi, S.R. & Doherty, R.D. Influence of grain size and stacking fault energy and on deformation twinning in FCC metals. Metall. Mater. Trans. A 30, 1223–1233 (1999).

    Article  Google Scholar 

  25. Inokuti Y. & Cantor, B. Acta Metall. 30, 343–356 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y. Gogotsi of Drexel University for his critical reading of the paper. This work was funded by the Army Research Office (DAAD19-00-1-0435) and the Division of Materials Research of the National Science Foundation (DMR-0072067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.W. Barsoum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barsoum, M., Zhen, T., Kalidindi, S. et al. Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nature Mater 2, 107–111 (2003). https://doi.org/10.1038/nmat814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing