Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A highly crystalline layered silicate with three-dimensionally microporous layers


Layered silicates with three-dimensional microporosity within the layers have the potential to enable new applications in catalysis, adsorption and ion-exchange. Until now no such materials have been reported. However, here we present the synthesis and structure of AMH-3, a silicate with three-dimensionally microporous layers, obtained in high purity and crystallinity. AMH-3 is composed of silicate layers containing eight-membered rings in all three principal crystal directions, and spaced by strontium cations, sodium cations and water molecules. Because of its three-dimensional pore structure, acid and thermal stability, this layered material could find applications in polymer–silicate composites for membrane applications, for synthesis of combined microporous–mesoporous materials, and for the formation of new zeolites and microporous films. Its existence also opens new possibilities for the synthesis of other layered silicates with multidimensional microporous framework layers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Porous layers in layered materials.
Figure 2: Characterization of AMH-3.
Figure 3: Ortep35 views of the AMH-3 structure along three crystallographic directions.
Figure 4: Projections of the AMH-3 structure omitting cations and water molecules.
Figure 5: Construction of two new zeolite frameworks from AMH-3 layers.


  1. Carrado, K.A. Synthetic organo- and polymer-clays: preparation, characterization, and materials applications. Appl. Clay Sci. 17, 1–23 (2000).

    Article  CAS  Google Scholar 

  2. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997).

    Article  CAS  Google Scholar 

  3. Kloprogge, J.T. Synthesis of smectites and porous pillared clay catalysts: A review. J. Porous Mater. 5, 5–41 (1998).

    Article  CAS  Google Scholar 

  4. Leonowicz, M.E., Lawton, J.A., Lawton, S.L. & Rubin, M.K. MCM-22 - a molecular-sieve with 2 independent multidimensional channel systems. Science 264, 1910–1913 (1994).

    Article  CAS  Google Scholar 

  5. Corma, A., Diaz, U., Domine, M.E. & Fornes, V. New aluminosilicate and titanosilicate delaminated materials active for acid catalysis, and oxidation reactions using H2O2 . J. Am. Chem. Soc. 122, 2804–2809 (2000).

    Article  CAS  Google Scholar 

  6. Corma, A., Fornes, V., Martinez-Triguero, J. & Pergher, S.B. Delaminated zeolites: Combining the benefits of zeolites and mesoporous materials for catalytic uses. J. Catal. 186, 57–63 (1999).

    Article  CAS  Google Scholar 

  7. Wolf, I., Gies, H. & Fyfe, C.A. Ordering of silicate layers by hydrogen-bonding networks: Solid state NMR investigation of the perfect three-dimensional registration in the layer silicate RUB-18. J. Phys. Chem. B 103, 5933–5938 (1999).

    Article  CAS  Google Scholar 

  8. Corma, A., Fornes, V., Pergher, S.B., Maesen, T.L.M. & Buglass, J.G. Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353–356 (1998).

    Article  CAS  Google Scholar 

  9. Krishnamoorti, R., Vaia, R.A. & Giannelis, E.P. Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 8, 1728–1734 (1996).

    Article  CAS  Google Scholar 

  10. Umemura, Y., Yamagishi, A., Schoonheydt, R., Persoons, A. & De Schryver, F. Fabrication of hybrid films of alkylammonium cations (CnH2n+1 NH3+; n=4–18) and a smectite clay by the Langmuir-Blodgett method. Langmuir 17, 449–455 (2001).

    Article  CAS  Google Scholar 

  11. Wang, Z. & Pinnavaia, T.J. Hybrid organic-inorganic nanocomposites: Exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater. 10, 1820–1826 (1998).

    Article  CAS  Google Scholar 

  12. Yano, K., Usuki, A., Okada, A., Kurauchi, T. & Kamigaito, O. Synthesis and properties of polyimide clay hybrid. J. Polym. Sci. A 31, 2493–2498 (1993).

    Article  CAS  Google Scholar 

  13. Cussler, E.L., Hughes, S.E., Ward, W.J. & Aris, R. Barrier membranes. J. Membrane Sci. 38, 161–174 (1988).

    Article  CAS  Google Scholar 

  14. Kan, Q.B., Fornes, V., Rey, F. & Corma, A. Transformation of layered aluminosilicates and gallosilicates with kanemite structure into mesoporous materials. J. Mater. Chem. 10, 993–1000 (2000).

    Article  CAS  Google Scholar 

  15. Kuroda, K. Orientation of guest molecules and formation of mesoporous silica induced by layered silicate-organic interactions. Mol. Cryst. Liq. Cryst. 341, 1087–1092 (2000).

    Article  Google Scholar 

  16. van Koningsveld, H., Vanbekkum, H. & Jansen, J.C. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy. Acta Crystallogr. B 43, 127–132 (1987).

    Article  Google Scholar 

  17. van koningsveld, H. High-Temperature (350-K) orthorhombic framework structure of zeolite H-ZSM-5. Acta Crystallogr. B 46, 731–735 (1990).

    Article  Google Scholar 

  18. Brese, N.E. & Okeeffe, M. Bond-valence parameters for solids. Acta Crystallogr. B 47, 192–197 (1991).

    Article  Google Scholar 

  19. Engelhardt, G. & Michel, D. High-Resolution Solid-State NMR of Silicates and Zeolites (Wiley, New York, 1987).

    Google Scholar 

  20. Merlino, S. Lovdarite, K4Na12(Be8Si28O72).18H2O, a Zeolite-like mineral - structural features and OD character. Eur. J. Mineral. 2, 809–817 (1990).

    Article  CAS  Google Scholar 

  21. Altomare, A. et al. EXTRA: A program for extracting structure factor amplitudes from powder diffraction data. J. Appl. Crystallogr. 28, 842–846 (1995).

    Article  CAS  Google Scholar 

  22. Altomare, A. et al. EXPO: a program for full powder pattern decomposition and crystal structure solution. J. Appl. Crystallogr. 32, 339–340 (1999).

    Article  CAS  Google Scholar 

  23. Larson, A.C. & von Dreele, R.B. (Los Alamos National Laboratory, Los Alamos NM, 1986).

  24. Stegun, I.A. (ed.) Handbook of Mathematical Functions (US Government Printing Office, Washington DC, 1972).

    Google Scholar 

  25. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A. & Skiff, W.M. Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  CAS  Google Scholar 

  26. Rappe, A.K. & Goddard, W.A. Charge equilibration for molecular-dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).

    Article  CAS  Google Scholar 

  27. Schaak, R.E. & Mallouk, T.E. Perovskites by design: A toolbox of solid-state reactions. Chem. Mater. 14, 1455–1471 (2002).

    Article  CAS  Google Scholar 

  28. Yao, Y.W., Natarajan, S., Chen, J.S. & Pang, W.Q. Synthesis and structural characterization of a new layered aluminophosphate intercalated with triply-protonated triethylenetetramine C6H21N4 Al3P4O16 . J. Solid State Chem. 146, 458–463 (1999).

    Article  CAS  Google Scholar 

  29. Gao, Q.M. et al. Nonaqueous synthesis and characterization of a new 2- dimensional layered aluminophosphate Al3P4O16 3 CH3CH2NH3 . J. Solid State Chem. 129, 37–44 (1997).

    Article  CAS  Google Scholar 

  30. Vidal, L., Marichal, C., Gramlich, V., Patarin, J. & Gabelica, Z. Mu-7, a new layered aluminophosphate CH3NH3 (3) Al3P4O16 with a 4 x 8 network: Characterization, structure, and possible crystallization mechanism. Chem. Mater. 11, 2728–2736 (1999).

    Article  CAS  Google Scholar 

  31. Wei, B., Yu, J.H., Shi, Z., Qiu, S.L. & Li, J.Y. A new layered aluminophosphate Al2P4O16 C6H22N4 C2H10N2 with 4.12-net porous sheets. J. Chem. Soc. Dalton Trans. 1979–1980 (2000).

  32. Yuan, H.M. et al. Dual function of racemic isopropanolamine as solvent and as template for the synthesis of a new layered aluminophosphate: NH3CH2CH(OH)CH3 Al3P4O16 . J. Solid State Chem. 151, 145–149 (2000).

    Article  CAS  Google Scholar 

  33. Jiang, T., Lough, A.J., Ozin, G.A., Young, D. & Bedard, R.L. Synthesis and structure of the novel nanoporous tin(IV) sulfide material TPA-SnS-3. Chem. Mater. 7, 245–248 (1995).

    Article  CAS  Google Scholar 

  34. Bowes, C.L. et al. Microporous layered tin sulfide, SnS-1: molecular sieve or intercalant? J. Mater. Chem. 8, 711–720 (1998).

    Article  CAS  Google Scholar 

  35. Burnett, M.N. & Johnson, C.K. ORTEP-III: Oak ridge thermal ellipsoid plot program for crystal structure illustrations. Oak Ridge National Laboratory Report ORNL-6895 (1996).

    Google Scholar 

Download references


We acknowledge support from NASA-Microgravity (98-HEDS-05-218), NSF (CTS 0091406) and Engelhard Co.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael Tsapatsis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeong, HK., Nair, S., Vogt, T. et al. A highly crystalline layered silicate with three-dimensionally microporous layers. Nature Mater 2, 53–58 (2003).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing