Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel Ti-base nanostructure–dendrite composite with enhanced plasticity

Abstract

Single-phase nanocrystalline materials undergo inhomogeneous plastic deformation under loading at room temperature, which results in a very limited plastic strain (smaller than 0–3%). The materials therefore display low ductility, leading to catastrophic failure, which severely restricts their application. Here, we present a new in situ-formed nanostructured matrix/ductile dendritic phase composite microstructure for Ti-base alloys, which exhibits up to 14.5% compressive plastic strain at room temperature. The new composite microstructure was synthesized on the basis of the appropriate choice of composition, and by using well-controlled solidification conditions. Deformation occurs partially through dislocation movement in dendrites, and partially through a shear-banding mechanism in the nanostructured matrix. The dendrites act as obstacles restricting the excessive deformation by isolating the highly localized shear bands in small, discrete inter-dendritic regions, and contribute to the plasticity. We suggest that microscale ductile crystalline phases might therefore be used to toughen nanostructured materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microstructures of as-cast 3-mm-diameter alloy cylinders.
Figure 2: Room-temperature compressive stress–strain curves for as-cast 3-mm-diameter cylinders.
Figure 3: Observation on deformed and fracture surface.

Similar content being viewed by others

References

  1. Ovid'ko, I.A. Deformation of nanostructures. Science 295, 2386–2386 (2002).

    Article  CAS  Google Scholar 

  2. Koch, C.C., Morris, D.G., Lu, K. & Inoue, A. Ductility of nanostructured materials. Mater. Res. Bull. 24, 54–58 (1999).

    Article  CAS  Google Scholar 

  3. Greer, A.L. Metallic glasses. Science 267, 1947–1953 (1995).

    Article  CAS  Google Scholar 

  4. Johnson, W.L. Bulk glass-forming metallic alloys: science and technology. Mater. Res. Bull. 24, 42–56 (1999).

    Article  CAS  Google Scholar 

  5. Inoue, A. High strength bulk amorphous alloys with low critical cooling rates (overview). Mater. Trans. JIM 36, 866–875 (1995).

    Article  CAS  Google Scholar 

  6. Nieh, T.G., Wadsworth, J., Liu, C.T., Ohkubo, Y. & Hirotsu, Y. Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta Mater. 49, 2887–2896 (2001).

    Article  CAS  Google Scholar 

  7. Liu, C.T. et al. Test environments and mechanical properites of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811–1820 (1998).

    Article  Google Scholar 

  8. Bruck, H.A., Christman, T., Rosakis, A.J. & Johnson, W.L. Quasi-static constitutive behaviour of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429–434 (1994).

    Article  CAS  Google Scholar 

  9. Fan, C. & Inoue, A. Improvement of mechanical properties by precipitation of nanoscale compound particles in Zr-Cu-Pd-Al amorphous alloys. Mater. Trans. JIM 38, 1040–1046 (1997).

    Article  CAS  Google Scholar 

  10. Kühn, U., Eckert, J., Mattern, N. & Schultz, L. ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478–2480 (2002).

    Article  Google Scholar 

  11. Hays, C.C., Kim, C.P. & Johnson, W.L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901–2904 (2000).

    Article  CAS  Google Scholar 

  12. Williams, D.B. & Carter, C.B. Transmission Electron Microscopy: A Textbook for Materials Science 444–450 (Plenum, New York, 1996).

    Book  Google Scholar 

  13. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000).

    Article  CAS  Google Scholar 

  14. Inoue, A. Preparation and novel properties of nanocrystalline and nanoquasicrystalline alloys. Nanostruct. Mater. 6, 53–64 (1995).

    Article  CAS  Google Scholar 

  15. Wei, Q., Jia, D., Ramesh, K.T. & Ma, E. Evolution and microstructure of shear bands in nanostructured Fe. Appl. Phys. Lett. 81, 1240–1242 (2002).

    Article  CAS  Google Scholar 

  16. Jia, D., Ramesh, K.T. & Ma, E. Failure mode and dynamic behaviour of nanophase iron under compression. Scripta Mater. 42, 73–78 (2000).

    Article  CAS  Google Scholar 

  17. Jia, D., Ramesh, K.T., Ma, E., Lu, L. & Lu, K. Compressive behaviour of an electrodeposited nanostructured copper at quasistatic and high strain rates. Scripta Mater. 45, 613–620 (2001).

    Article  CAS  Google Scholar 

  18. Carsley, J.E., Fisher, A., Milligan, W.W. & Aifantis, E.C. Mechanical behaviour of a bulk nanostructured iron alloy. Metall. Mater. Trans. A 29, 2261–2271 (1998).

    Article  Google Scholar 

  19. McFadden, S.X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P. & Mukherjee, A.K. Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684–686 (1999).

    Article  CAS  Google Scholar 

  20. Chen, H., He, Y., Shiflet, G.J. & Poon, S.J. Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541–543 (1994).

    Article  CAS  Google Scholar 

  21. Weertman, J.R. et al. Structure and mechanical behaviour of bulk nanocrystalline materials. Mater. Res. Bull. 24, 44–50 (1999).

    Article  CAS  Google Scholar 

  22. Fan, C. & Inoue, A. Preparation and mechanical properties of Zr-based bulk nanocrystalline alloys containing compound and amorphous phases. Mater. Trans. JIM 40, 42–51 (1999).

    Article  CAS  Google Scholar 

  23. Zhang, T. & Inoue, A. Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater. Trans. JIM 39, 1001–1006 (1998).

    Article  CAS  Google Scholar 

  24. Lin, X.H. & Johnson, W.L. Formation of Ti-Zr-Cu-Ni bulk metallic glasses. J. Appl. Phys. 78, 6514–6519 (1995).

    Article  CAS  Google Scholar 

  25. Bakker, H. Enthalpies in Alloys 70 (Trans Tech, Switzerland, 1998).

    Book  Google Scholar 

  26. Froes, F.H., Yau, T.L. & Weidinger, H.G. in Materials Science and Technology Vol. 8 (eds Cahn, R.W., Haasen, P. & Kramer, E.J.) 403–435 (VCH, Weinheim, Germany, 1996).

    Google Scholar 

  27. Massalaki, T.B., Okamoto, H., Subramanian, P.R. & Kacprzak, L. (eds) Binary Alloy Phase Diagrams 2nd edn 1416–3441 (ASM International, Ohio, USA, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank M. Frey, H.Grahl, M. Gründlich, A. Güth, H.-J. Klauβ, U. Kühn, C. Mickel, S. Müller-Litvanyi, S. Roth, S. Schinnerling, A. Schwab and Z. F. Zhang for technical assistance and stimulating discussions. This work was supported by the EU within the framework of the RTN-Network on bulk metallic glasses (HPRN-CT-2000-00033). G. He is very grateful for the financial support of the Alexander-von-Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, G., Eckert, J., Löser, W. et al. Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nature Mater 2, 33–37 (2003). https://doi.org/10.1038/nmat792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing